login
Number of inner dual graphs of planar polyhexes with n hexagons.
2

%I #13 Oct 01 2022 19:23:39

%S 1,1,2,4,8,21,53,151,458,1477,4918,16956,59494,212364,766753,2796876,

%T 10284793,38096072,141998218,532301941,2005638293,7592441954,

%U 28865031086,110174528925,422064799013,1622379252093

%N Number of inner dual graphs of planar polyhexes with n hexagons.

%H Gunnar Brinkmann, Gilles Caporossi and Pierre Hansen, <a href="https://doi.org/10.1016/S0196-6774(02)00215-8">A constructive enumeration of fusenes and benzenoids</a>, Journal of Algorithms, Volume 45, Issue 2, November 2002, Pages 155-166.

%H Gunnar Brinkmann, Gilles Caporossi and Pierre Hansen, <a href="https://doi.org/10.1021/ci025526c">A Survey and New Results on Computer Enumeration of Polyhex and Fusene Hydrocarbons</a>, J. Chem. Inf. Comput. Sci. 2003, 43, 3, 842-851.

%e For n = 4, the a(n) = 4 graphs are: the 4-path, which is the inner dual of 4 polyhexes out of A018190(4) = 7 (each of the others is an inner dual of a single polyhex); the paw graph; the diamond graph; the claw graph.

%Y Cf. A018190, A108070, A108072.

%K nonn

%O 1,3

%A _Gunnar Brinkmann_, Jun 05 2005

%E Name corrected by _Andrey Zabolotskiy_, Oct 01 2022