%I #7 Dec 15 2017 17:36:48
%S 1,2,10,12,14,26,28,34,37,44,147,156,192,229,237,246,263,282,317,325,
%T 409,413,432,436,467,510,515,534,561,570,598,600,611,636,687,702,729,
%U 738,776,818,830,859,894,901,903,914,954,1000,1014,1017,1054,1075,1080
%N Numbers n such that DENEAT(n^n) is prime, where DENEAT(n) = concatenate number of even digits in n, number of odd digits and total number of digits.
%e 12 is in the sequence because 12^12 = 8916100448256 has 9 even digits,
%e 4 odd digits and 13 total digits, yielding the prime 9413.
%t deneatQ[n_]:=Module[{idn=IntegerDigits[n^n]},PrimeQ[FromDigits[ Join[ IntegerDigits[ Count[ idn, _?EvenQ]],IntegerDigits[Count[idn,_?OddQ]], IntegerDigits[Length[idn]]]]]]; Select[Range[1200],deneatQ] (* _Harvey P. Dale_, Aug 04 2015 *)
%Y Cf. A073053.
%K base,nonn
%O 1,2
%A _Jason Earls_, Jun 03 2005