login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A107915 a(n) = binomial(n+4,4)*binomial(n+5,4)*binomial(n+6,4)/75. 5
1, 35, 490, 4116, 24696, 116424, 457380, 1557270, 4723719, 13026013, 33157124, 78835120, 176729280, 376375104, 766192176, 1498581756, 2828205765, 5168991135, 9177226366, 15870391460, 26794167400, 44253495000, 71627692500, 113794603650, 177694650315 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Kekulé numbers for certain benzenoids.

Partial sums of A107917. - Peter Bala, Sep 21 2007

REFERENCES

S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (p. 229).

LINKS

T. D. Noe, Table of n, a(n) for n = 0..1000

FORMULA

a(n) = C(n,n-2)*C(n+1,n-3)*C(n+2,n-4)/(5*3!), n>=4. - Zerinvary Lajos, May 29 2007

a(n-3) = 1/144*sum {1 <= x_1, x_2, x_3 <= n} x_1*x_2*x_3*(det V(x_1,x_2,x_3))^2 = 1/144*sum {1 <= i,j,k <= n} i*j*k*((i-j)(i-k)(j-k))^2, where V(x_1,x_2,x_3) is the Vandermonde matrix of order 3. - Peter Bala, Sep 21 2007

G.f.: -(x^6+22*x^5+113*x^4+190*x^3+113*x^2+22*x+1)/(x-1)^13. - Colin Barker, Jun 06 2012

MAPLE

a:=n->(1/75)*binomial(n+4, 4)*binomial(n+5, 4)*binomial(n+6, 4): seq(a(n), n=0..27);

seq(binomial(n, n-2)*binomial(n+1, n-3)*binomial(n+2, n-4)/(5*3!), n=4..22); # Zerinvary Lajos, May 29 2007

CROSSREFS

Cf. A047819, A107917, A133708.

Sequence in context: A298946 A219582 A177079 * A219370 A278674 A219468

Adjacent sequences:  A107912 A107913 A107914 * A107916 A107917 A107918

KEYWORD

nonn,easy

AUTHOR

Emeric Deutsch, Jun 12 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 22 22:24 EDT 2020. Contains 337291 sequences. (Running on oeis4.)