This site is supported by donations to The OEIS Foundation.

 Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS". Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A107877 Column 1 of triangle A107876. 9
 1, 1, 2, 7, 37, 268, 2496, 28612, 391189, 6230646, 113521387, 2332049710, 53384167192, 1348601249480, 37291381915789, 1120914133433121, 36406578669907180, 1271084987848923282, 47487293697623885913, 1890771531272515677250, 79947079338974990793060 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Also number of subpartitions of partition consisting of first n-1 triangular numbers; e.g., a(4) = subp([1,3,6]) = 37. - Franklin T. Adams-Watters, Jun 26 2006 Number of length-n restricted growth strings (RGS) [s(0),s(1),...,s(n-1)] where s(0)=0 and s(k)<=s(k-1)+k, see Fxtbook link and example. - Joerg Arndt, Apr 30 2011 Number of Dyck paths whose ascent lengths are exactly {1,2,..n+1}, for example the a(2) = 2 paths are uduuduuudddd and uduudduuuddd. - David Scambler, May 30 2012 Number of types of cells of a fine mixed subdivision of the Tesler flow polytope. - Alejandro H. Morales, Oct 11 2017 REFERENCES R. P. Stanley, Enumerative Combinatorics volume 1, 2nd edition, Cambridge University Press, 2011, Ch. 3 LINKS Alois P. Heinz, Table of n, a(n) for n = 0..390 Joerg Arndt, Matters Computational (The Fxtbook), section 17.3.6, pp. 368-369 K. Mészáros, A. H. Morales, Volumes and Ehrhrat polynomials of flow polytopes, arXiv:1710.00701 [math.CO], 2017, sections 6.1 and 7. FORMULA G.f.: 1 = Sum_{k>=0} a(k)*x^k*(1-x)^(1 + k*(k+1)/2). G.f.: 1 = Sum_{k>=0} a(k)*x^k/(1+x)^((k+1)*(k+2)/2). From Benedict W. J. Irwin, Nov 26 2016: (Start) Conjecture: a(n) can be expressed with a series of nested sums, a(3) = Sum_{i=1..2} i+2, a(4) = Sum_{i=1..2}Sum_{j=1..i+2} j+3, a(5) = Sum_{i=1..2}Sum_{j=1..i+2}Sum_{k=1..j+3} k+4, a(6) = Sum_{i=1..2}Sum_{j=1..i+2}Sum_{k=1..j+3}Sum_{l=1..k+4} l+5. (End) Determinantal formula: a(n) = Det(A) where A is the n by n matrix with entries A(i,j) = binomial(binomial(n+1-i,2)+1,i-j+1). This follows by the formula by MacMahon (see EC1 Ex 3.63) for the number of such subpartitions. -  Alejandro H. Morales, Aug 31 2017 EXAMPLE 1 = 1*(1-x)^1 + 1*x*(1-x)^2 + 2*x^2*(1-x)^4 + 7*x^3*(1-x)^7 + 37*x^4*(1-x)^11 + 268*x^5*(1-x)^16 + 2496*x^6*(1-x)^22 + ... Also equals the final term in rows of the triangle where row n+1 equals the partial sums of row n with the final term repeated n+1 times, starting with a '1' in row 0, as illustrated by: 1; 1, 1; 1, 2,. 2,. 2; 1, 3,. 5,. 7,. 7,. 7,.. 7; 1, 4,. 9, 16, 23, 30,. 37,. 37,. 37,. 37,. 37; 1, 5, 14, 30, 53, 83, 120, 157, 194, 231, 268, 268, 268, 268, 268, 268; ... Restricted growth strings: a(0)=1 corresponds to the empty string; a(1)=1 to [0]; a(2) = 2 to [00] and [01]; a(3)=7 to   1:  [ 0 0 0 ],   2:  [ 0 0 1 ],   3:  [ 0 0 2 ],   4:  [ 0 1 0 ],   5:  [ 0 1 1 ],   6:  [ 0 1 2 ],   7:  [ 0 1 3 ]. [Joerg Arndt, Apr 30 2011] MAPLE b:= proc(n, y) option remember; `if`(n=0, 1, add(       b(n-1, y+i-n), i=max(1, n-y)..n*(n-1)/2+1-y))     end: a:= n-> b(n+1, 0): seq(a(n), n=0..25);  # Alois P. Heinz, Nov 26 2016 # second Maple program: a:= n-> LinearAlgebra:-Determinant(Matrix(n, (i, j)->         binomial(binomial(n+1-i, 2)+1, i-j+1))): seq(a(n), n=0..25); # Alejandro H. Morales, Aug 31 2017 MATHEMATICA a[ n_, k_: 1, j_: 1] := If[ n < 2, Boole[n >= 0], a[n, k, j] = Sum[a[n - 1, i, j + 1], {i, k + j}]]; (* Michael Somos, Nov 26 2016 *) PROG (PARI) {a(n)=polcoeff(1-sum(k=0, n-1, a(k)*x^k*(1-x+x*O(x^n))^(1+k*(k+1)/2)), n)} CROSSREFS Cf. A107876, A107878, A107879, A115728, A115729. Sequence in context: A144301 A083659 A036247 * A001028 A116481 A102743 Adjacent sequences:  A107874 A107875 A107876 * A107878 A107879 A107880 KEYWORD nonn AUTHOR Paul D. Hanna, Jun 04 2005, Apr 10 2007 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.