This site is supported by donations to The OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A107877 Column 1 of triangle A107876. 11
 1, 1, 2, 7, 37, 268, 2496, 28612, 391189, 6230646, 113521387, 2332049710, 53384167192, 1348601249480, 37291381915789, 1120914133433121, 36406578669907180, 1271084987848923282, 47487293697623885913, 1890771531272515677250, 79947079338974990793060 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Also number of subpartitions of partition consisting of first n-1 triangular numbers; e.g., a(4) = subp([1,3,6]) = 37. - Franklin T. Adams-Watters, Jun 26 2006 Number of length-n restricted growth strings (RGS) [s(0),s(1),...,s(n-1)] where s(0)=0 and s(k) <= s(k-1)+k, see Fxtbook link and example. - Joerg Arndt, Apr 30 2011 Number of Dyck paths whose ascent lengths are exactly {1,2,...,n+1}; for example, the a(2) = 2 paths are uduuduuudddd and uduudduuuddd. - David Scambler, May 30 2012 Number of types of cells of a fine mixed subdivision of the Tesler flow polytope. - Alejandro H. Morales, Oct 11 2017 REFERENCES R. P. Stanley, Enumerative Combinatorics volume 1, 2nd edition, Cambridge University Press, 2011, Ch. 3 LINKS Alois P. Heinz, Table of n, a(n) for n = 0..390 Joerg Arndt, Matters Computational (The Fxtbook), section 17.3.6, pp. 368-369 K. Mészáros, A. H. Morales, Volumes and Ehrhart polynomials of flow polytopes, arXiv:1710.00701 [math.CO], 2017, sections 6.1 and 7. FORMULA G.f.: 1 = Sum_{k>=0} a(k)*x^k*(1-x)^(1 + k*(k+1)/2). G.f.: 1 = Sum_{k>=0} a(k)*x^k/(1+x)^((k+1)*(k+2)/2). From Benedict W. J. Irwin, Nov 26 2016: (Start) Conjecture: a(n) can be expressed with a series of nested sums, a(3) = Sum_{i=1..2} i+2, a(4) = Sum_{i=1..2} Sum_{j=1..i+2} j+3, a(5) = Sum_{i=1..2} Sum_{j=1..i+2} Sum_{k=1..j+3} k+4, a(6) = Sum_{i=1..2} Sum_{j=1..i+2} Sum_{k=1..j+3} Sum_{l=1..k+4} l+5. (End) Determinantal formula: a(n) = Det(A) where A is the n X n matrix with entries A(i,j) = binomial(binomial(n+1-i,2)+1,i-j+1). This follows by the formula by MacMahon (see EC1 Ex 3.63) for the number of such subpartitions. -  Alejandro H. Morales, Aug 31 2017 EXAMPLE 1 = 1*(1-x)^1 + 1*x*(1-x)^2 + 2*x^2*(1-x)^4 + 7*x^3*(1-x)^7 + 37*x^4*(1-x)^11 + 268*x^5*(1-x)^16 + 2496*x^6*(1-x)^22 + ... Also equals the final term in rows of the triangle where row n+1 equals the partial sums of row n with the final term repeated n+1 times, starting with a '1' in row 0, as illustrated by: 1; 1, 1; 1, 2,  2,  2; 1, 3,  5,  7,  7,  7,   7; 1, 4,  9, 16, 23, 30,  37,  37,  37,  37,  37; 1, 5, 14, 30, 53, 83, 120, 157, 194, 231, 268, 268, 268, 268, 268, 268; ... Restricted growth strings: a(0)=1 corresponds to the empty string; a(1)=1 to ; a(2) = 2 to  and ; a(3)=7 to   1:  [ 0 0 0 ],   2:  [ 0 0 1 ],   3:  [ 0 0 2 ],   4:  [ 0 1 0 ],   5:  [ 0 1 1 ],   6:  [ 0 1 2 ],   7:  [ 0 1 3 ]. [Joerg Arndt, Apr 30 2011] MAPLE b:= proc(n, y) option remember; `if`(n=0, 1, add(       b(n-1, y+i-n), i=max(1, n-y)..n*(n-1)/2+1-y))     end: a:= n-> b(n+1, 0): seq(a(n), n=0..25);  # Alois P. Heinz, Nov 26 2016 # second Maple program: a:= n-> LinearAlgebra:-Determinant(Matrix(n, (i, j)->         binomial(binomial(n+1-i, 2)+1, i-j+1))): seq(a(n), n=0..25); # Alejandro H. Morales, Aug 31 2017 MATHEMATICA a[ n_, k_: 1, j_: 1] := If[ n < 2, Boole[n >= 0], a[n, k, j] = Sum[a[n - 1, i, j + 1], {i, k + j}]]; (* Michael Somos, Nov 26 2016 *) PROG (PARI) {a(n)=polcoeff(1-sum(k=0, n-1, a(k)*x^k*(1-x+x*O(x^n))^(1+k*(k+1)/2)), n)} CROSSREFS Cf. A107876, A107878, A107879, A115728, A115729. Cf. A305605, A305601. Sequence in context: A144301 A036247 A083659 * A001028 A116481 A102743 Adjacent sequences:  A107874 A107875 A107876 * A107878 A107879 A107880 KEYWORD nonn AUTHOR Paul D. Hanna, Jun 04 2005, Apr 10 2007 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 18 02:23 EDT 2019. Contains 328135 sequences. (Running on oeis4.)