login
A107850
Expansion of g.f. (x^2+x+1)*(2*x^2+2*x+1)*(x-1)^2/((1-x^2-2*x^3)*(x^4+1)).
6
1, 1, 1, 0, 1, 1, 3, 6, 7, 13, 17, 24, 41, 57, 91, 142, 207, 325, 489, 736, 1137, 1713, 2611, 3990, 6039, 9213, 14017, 21288, 32441, 49321, 75019, 114206, 173663, 264245, 402073, 611568, 930561, 1415713, 2153699, 3276838, 4985127, 7584237, 11538801
OFFSET
0,7
COMMENTS
Floretion Algebra Multiplication Program, FAMP Code: 1lesforzapseq[(.5i' + .5j' + .5'ki' + .5'kj')*(.5'i + .5'j + .5'ik' + .5'jk')], 1vesforzap = A000004
FORMULA
a(n) = A052947(n-1)+A118831(n+6). - R. J. Mathar, Apr 18 2008
a(0)=1, a(1)=1, a(2)=1, a(3)=0, a(4)=1, a(5)=1, a(6)=3, a(n)=a(n-2)+ 2*a(n-3)- a(n-4)+a(n-6)+2*a(n-7). - Harvey P. Dale, Dec 26 2015
MATHEMATICA
CoefficientList[Series[(x^2+x+1)(2x^2+2x+1)(x-1)^2/((1-x^2-2x^3)(x^4+1)), {x, 0, 50}], x] (* or *) LinearRecurrence[{0, 1, 2, -1, 0, 1, 2}, {1, 1, 1, 0, 1, 1, 3}, 50] (* Harvey P. Dale, Dec 26 2015 *)
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Creighton Dement, May 25 2005
STATUS
approved