|
|
A107849
|
|
Expansion of (1 + x)^2 / ((1 - x^2 - 2*x^3)*(1 + x^4)).
|
|
6
|
|
|
1, 2, 2, 4, 5, 6, 12, 16, 25, 42, 58, 92, 141, 206, 324, 488, 737, 1138, 1714, 2612, 3989, 6038, 9212, 14016, 21289, 32442, 49322, 75020, 114205, 173662, 264244, 402072, 611569, 930562, 1415714, 2153700, 3276837, 4985126, 7584236, 11538800
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
LINKS
|
Colin Barker, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (0,1,2,-1,0,1,2).
|
|
FORMULA
|
a(n) = A052947(n+2) + A014017(n+6). - Ralf Stephan, Nov 30 2010
a(n) = a(n-2) + 2*a(n-3) - a(n-4) + a(n-6) + 2*a(n-7) for n>6. - Colin Barker, Apr 30 2019
|
|
PROG
|
Floretion Algebra Multiplication Program, FAMP Code: 1tesforzapseq[(.5i' + .5j' + .5'ki' + .5'kj')*(.5'i + .5'j + .5'ik' + .5'jk')]
(PARI) Vec((1 + x)^2 / ((1 - x^2 - 2*x^3)*(1 + x^4)) + O(x^45)) \\ Colin Barker, Apr 30 2019
|
|
CROSSREFS
|
Cf. A107850, A107851, A107852.
Sequence in context: A138883 A257632 A325554 * A053036 A308840 A067957
Adjacent sequences: A107846 A107847 A107848 * A107850 A107851 A107852
|
|
KEYWORD
|
easy,nonn
|
|
AUTHOR
|
Creighton Dement, May 25 2005
|
|
STATUS
|
approved
|
|
|
|