|
|
A107846
|
|
Number of duplicate digits of n.
|
|
3
|
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,1
|
|
COMMENTS
|
a(A010784(n)) = 0; a(A109303(n)) > 0. - Reinhard Zumkeller, Jul 09 2013
|
|
LINKS
|
Reinhard Zumkeller, Table of n, a(n) for n = 0..10000
|
|
FORMULA
|
a(n) = A055642(n) - A043537(n).
|
|
EXAMPLE
|
a(11) = 1 because 11 has two total decimal digits but only one distinct digit (1) and 2-1=1.
Similarly, a(3653135) = 7 (total digits) - 4 (distinct digits: 1,3,5,6) = 3 (There are three duplicate digits here, namely, 3, 3 and 5).
|
|
MAPLE
|
A107846:=proc(q) local a, b, c, n;
for n from 0 to q do a:=n; b:=[];
while a>0 do c:=a mod 10; b:=[op(b), c]; a:=trunc(a/10); od;
a:=nops(b); b:=nops({op(b)}); print(a-b);
od; end: A107846(10^4); # Paolo P. Lava, Apr 18 2013
|
|
MATHEMATICA
|
Table[Total[Select[DigitCount[n]-1, #>0&]], {n, 0, 120}] (* Harvey P. Dale, Jul 31 2013 *)
|
|
PROG
|
(Haskell)
import Data.List (sort, group)
a107846 = length . concatMap tail . group . sort . show :: Integer -> Int
-- Reinhard Zumkeller, Jul 09 2013
|
|
CROSSREFS
|
Cf. A055642 (Total decimal digits of n), A043537 (Distinct decimal digits of n).
Sequence in context: A011726 A297041 A070109 * A179801 A065202 A323547
Adjacent sequences: A107843 A107844 A107845 * A107847 A107848 A107849
|
|
KEYWORD
|
base,easy,nonn
|
|
AUTHOR
|
Rick L. Shepherd, May 24, 2005
|
|
STATUS
|
approved
|
|
|
|