login
Number of nonisomorphic self-dual monotone Boolean functions of n variables (where the result depends on all n variables).
3

%I #12 Dec 29 2023 15:26:40

%S 1,0,1,1,4,23,686

%N Number of nonisomorphic self-dual monotone Boolean functions of n variables (where the result depends on all n variables).

%D S. Muroga. Threshold Logic and its Applications. Wiley, 1971.

%D John von Neumann and Oskar Morgenstern, Theory of Games and Economic Behavior (1944), Section 52.5.

%e The four cases for n=5 can be represented as simple majority functions as follows:

%e maj(a,b,c,d,e); maj(a,a,b,b,c,d,e); maj(a,a,a,b,b,c,c,d,e); maj(a,a,a,b,c,d,e).

%e (Only 14 of the 23 cases for n=6 have a simple representation of this form.)

%Y Cf. A107766, A001206.

%Y Cf. A008840 (larger class of Boolean functions = partial sums of A107765). - _Olivier GĂ©rard_, Oct 11 2012

%K hard,nonn,more

%O 1,5

%A _Don Knuth_, Jun 11 2005

%E a(7) from _Vladeta Jovovic_, Jun 13 2005