login
A107752
Primes of the form r(r(r(r(r(n)+1)+1)+1)+1)+1, where A141468(n)=r(n)=n-th nonprime.
0
2, 37, 67, 71, 101, 103, 137, 151, 157, 179, 197, 199, 211, 227, 239, 257, 263, 277, 281, 311, 331, 347, 353, 359, 367, 373, 379, 401, 419, 443, 457, 461, 467, 499, 503, 509, 521, 523, 541, 563, 571, 577, 587, 613, 641, 647, 659, 661, 673, 677, 709, 719, 733
OFFSET
1,1
EXAMPLE
If n = 1, then
r(r(r(r(r(1)+1)+1)+1)+1)+1 = r(r(r(r(0+1)+1)+1)+1)+1 = r(r(r(r(1)+1)+1)+1)+1 = r(r(r(0+1)+1)+1)+1 = r(r(r(1)+1)+1)+1 = r(r(0+1)+1)+1 = r(r(1)+1)+1 = r(0+1)+1 = r(1)+1 = 0+1 = 1
(nonprime).
If n = 2, then
r(r(r(r(r(2)+1)+1)+1)+1)+1 = r(r(r(r(1+1)+1)+1)+1)+1 = r(r(r(r(2)+1)+1)+1)+1 = r(r(r(1+1)+1)+1)+1 = r(r(r(2)+1)+1)+1 = r(r(1+1)+1)+1 = r(r(2)+1)+1 = r(1+1)+1 = r(2)+1 = 1+1 = 2 = a(1).
If n = 3, then
r(r(r(r(r(3)+1)+1)+1)+1)+1 = r(r(r(r(4+1)+1)+1)+1)+1 = r(r(r(r(5)+1)+1)+1)+1 = r(r(r(8+1)+1)+1)+1 = r(r(r(9)+1)+1)+1 = r(r(14+1)+1)+1 = r(r(15)+1)+1 = r(22+1)+1 = r(23)+1 = 33+1 = 34
(nonprime).
If n = 4, then
r(r(r(r(r(4)+1)+1)+1)+1)+1 = r(r(r(r(6+1)+1)+1)+1)+1 = r(r(r(r(7)+1)+1)+1)+1 = r(r(r(10+1)+1)+1)+1 = r(r(r(11)+1)+1)+1 = r(r(16+1)+1)+1 = r(r(17)+1)+1 = r(25+1)+1 = r(26)+1 = 36+1 = 37 = a(2).
If n = 5, then
r(r(r(r(r(5)+1)+1)+1)+1)+1 = r(r(r(r(8+1)+1)+1)+1)+1 = r(r(r(r(9)+1)+1)+1)+1 = r(r(r(14+1)+1)+1)+1 = r(r(r(15)+1)+1)+1 = r(r(22+1)+1)+1 = r(r(23)+1)+1 = r(33+1)+1 = r(34)+1 = 48+1 = 49
(nonprime).
If n = 6, then
r(r(r(r(r(6)+1)+1)+1)+1)+1 = r(r(r(r(9+1)+1)+1)+1)+1 = r(r(r(r(10)+1)+1)+1)+1 = r(r(r(15+1)+1)+1)+1 = r(r(r(16)+1)+1)+1 = r(r(24+1)+1)+1 = r(r(25)+1)+1 = r(35+1)+1 = r(36)+1 = 50+1 = 51
(nonprime).
If n = 7, then
r(r(r(r(r(7)+1)+1)+1)+1)+1 = r(r(r(r(10+1)+1)+1)+1)+1 = r(r(r(r(11)+1)+1)+1)+1 = r(r(r(16+1)+1)+1)+1 = r(r(r(17)+1)+1)+1 = r(r(25+1)+1)+1 = r(r(26)+1)+1 = r(36+1)+1 = r(37)+1 = 51+1 = 52
(nonprime).
If n = 8, then
r(r(r(r(r(8)+1)+1)+1)+1)+1 = r(r(r(r(12+1)+1)+1)+1)+1 = r(r(r(r(13)+1)+1)+1)+1 = r(r(r(20+1)+1)+1)+1 = r(r(r(21)+1)+1)+1 = r(r(30+1)+1)+1 = r(r(31)+1)+1 = r(44+1)+1 = r(45)+1 = 62+1 = 63
(nonprime).
If n = 9, then
r(r(r(r(r(9)+1)+1)+1)+1)+1 = r(r(r(r(14+1)+1)+1)+1)+1 = r(r(r(r(15)+1)+1)+1)+1 = r(r(r(22+1)+1)+1)+1 = r(r(r(23)+1)+1)+1 = r(r(33+1)+1)+1 = r(r(34)+1)+1 = r(48+1)+1 = r(49)+1 = 66+1 = 67 = a
(3).
If n = 10, then
r(r(r(r(r(10)+1)+1)+1)+1)+1 = r(r(r(r(15+1)+1)+1)+1)+1 = r(r(r(r(16)+1)+1)+1)+1 = r(r(r(24+1)+1)+1)+1 = r(r(r(25)+1)+1)+1 = r(r(35+1)+1)+1 = r(r(36)+1)+1 = r(50+1)+1 = r(51)+1 = 69+1 = 70
(nonprime)
If n = 11, then
r(r(r(r(r(11)+1)+1)+1)+1)+1 = r(r(r(r(16+1)+1)+1)+1)+1 = r(r(r(r(17)+1)+1)+1)+1 = r(r(r(25+1)+1)+1)+1 = r(r(r(26)+1)+1)+1 = r(r(36+1)+1)+1 = r(r(37)+1)+1 = r(51+1)+1 = r(52)+1 = 70+1 = 71 = a(4),
etc.
CROSSREFS
Sequence in context: A062606 A282639 A099533 * A055031 A041161 A106947
KEYWORD
nonn
AUTHOR
EXTENSIONS
127 removed, 151 added, 407 removed and extended by R. J. Mathar, Sep 05 2008
STATUS
approved