login
A107726
Matrix inverse of triangle A107717, read by rows.
2
1, -3, 1, -3, -6, 1, -21, -3, -9, 1, -219, -21, -3, -12, 1, -2973, -219, -21, -3, -15, 1, -49323, -2973, -219, -21, -3, -18, 1, -964173, -49323, -2973, -219, -21, -3, -21, 1, -21680571, -964173, -49323, -2973, -219, -21, -3, -24, 1, -551173053, -21680571, -964173, -49323, -2973, -219, -21, -3, -27, 1
OFFSET
0,2
COMMENTS
Except for initial terms, each column is the same and equals negative A107716 (inverse INVERT of triple factorials).
EXAMPLE
Triangle begins:
1;
-3,1;
-3,-6,1;
-21,-3,-9,1;
-219,-21,-3,-12,1;
-2973,-219,-21,-3,-15,1;
-49323,-2973,-219,-21,-3,-18,1;
-964173,-49323,-2973,-219,-21,-3,-21,1; ...
Matrix inverse is A107717:
1;
3,1;
21,6,1;
219,57,9,1;
2973,723,111,12,1;
49323,11361,1713,183,15,1; ...
PROG
(PARI) T(n, k)=if(n<k || k<0, 0, matrix(n+1, n+1, m, j, if(m>=j, if(m==j, 1, if(m==j+1, -3*j, polcoeff(1/sum(i=0, m-j, prod(r=0, i-1, 3*r+1)*x^i)+O(x^m), m-j)))))[n+1, k+1])
CROSSREFS
Sequence in context: A181425 A174505 A096713 * A114159 A236560 A291723
KEYWORD
sign,tabl
AUTHOR
Paul D. Hanna, May 30 2005
STATUS
approved