login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A107667 Triangular matrix T, read by rows, that satisfies: T = D + SHIFT_LEFT(T^2) where SHIFT_LEFT shifts each row 1 place left and D is the diagonal matrix {1,2,3,...}. 7
1, 4, 2, 45, 9, 3, 816, 112, 16, 4, 20225, 2200, 225, 25, 5, 632700, 58176, 4860, 396, 36, 6, 23836540, 1920163, 138817, 9408, 637, 49, 7, 1048592640, 75683648, 4886464, 290816, 16576, 960, 64, 8, 52696514169, 3460349970, 203451912, 10948203, 553473 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Table of n, a(n) for n=0..40.

FORMULA

Matrix diagonalization method: define triangular matrix P by P(n, k) = ((n+1)^2)^(n-k)/(n-k)!, n>=k>=0 and diagonal matrix D(n, n) = n+1, then T is given by T = P^-1*D*P.

Rows read in reverse form the initial terms of the g.f.: (n+1) = Sum_{k>=0} T(n, n-k) * Product_{j=0..k} (1-(n+1-j)*x) = T(n, n)*(1-(n+1)*x) + T(n, n-1)*(1-(n+1)*x)*(1-n*x) + T(n, n-2)*(1-(n+1)*x)*(1-n*x)*(1-(n-1)*x) + ...

EXAMPLE

Reverse of rows form the initial terms of g.f.s below.

Row 1: 1 = 1*(1-x) + 1*x*(1-x) + ...

Row 2: 2 = 2*(1-2*x) + 4*x*(1-2*x)*(1-x) + 12*x^2*(1-2*x)*(1-x)+...

Row 3: 3 = 3*(1-3*x) + 9*x*(1-3*x)*(1-2*x)

+ 45*x^2*(1-3*x)*(1-2*x)*(1-x)

+ 216*x^3*(1-3*x)*(1-2*x)*(1-x) +...

Row 4: 4 = 4*(1-4*x) + 16*x*(1-4*x)*(1-3*x)

+ 112*x^2*(1-4*x)*(1-3*x)*(1-2*x)

+ 816*x^3*(1-4*x)*(1-3*x)*(1-2*x)*(1-x)

+ 5248*x^4*(1-4*x)*(1-3*x)*(1-2*x)*(1-x) +...

Triangle begins:

1;

4,2;

45,9,3;

816,112,16,4;

20225,2200,225,25,5;

632700,58176,4860,396,36,6;

23836540,1920163,138817,9408,637,49,7;

1048592640,75683648,4886464,290816,16576,960,64,8; ...

The matrix square T^2 shifts each row right 1 place,

dropping the diagonal D and putting A006689 in column 0:

1;

12,4;

216,45,9;

5248,816,112,16;

160675,20225,2200,225,25;

5931540,632700,58176,4860,396,36;

256182290,23836540,1920163,138817,9408,637,49; ...

PROG

(PARI) {T(n, k)=local(P=matrix(n+1, n+1, r, c, if(r>=c, (r^2)^(r-c)/(r-c)!)), D=matrix(n+1, n+1, r, c, if(r==c, r))); if(n>=k, (P^-1*D*P)[n+1, k+1])}

CROSSREFS

Cf. A107668 (column 0), A107669, A107670 (matrix square), A006689.

Sequence in context: A264755 A120968 A193894 * A163176 A277306 A201444

Adjacent sequences:  A107664 A107665 A107666 * A107668 A107669 A107670

KEYWORD

nonn,tabl

AUTHOR

Paul D. Hanna, Jun 07 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 25 22:10 EDT 2019. Contains 324357 sequences. (Running on oeis4.)