login
A107666
Primes with semiprime digits (digits 4, 6, 9 only).
9
449, 499, 4649, 4969, 4999, 6449, 6469, 6949, 9649, 9949, 44449, 44699, 46499, 46649, 49499, 49669, 49999, 64499, 64969, 66449, 66499, 66949, 69499, 94649, 94949, 94999, 96469, 99469, 444449, 444469, 444649, 446969, 449699, 464699, 464999, 466649, 469649, 469969
OFFSET
1,1
COMMENTS
Intersection of A000040 and A107665. - K. D. Bajpai, Sep 08 2014
LINKS
EXAMPLE
From K. D. Bajpai, Sep 08 2014: (Start)
4649 is a term because it is a prime having only semiprime digits 4, 6 and 9.
6469 is a term because it is a prime having only semiprime digits 4, 6 and 9.
449 is the smallest prime comprising only semiprime digits 4, 6 or 9.
(End)
MAPLE
N:= 4: Dgts:= {4, 6, 9}: A:= NULL:
for d from 1 to N do
K:= combinat[cartprod]([Dgts minus {0}, Dgts $(d-1)]);
while not K[finished] do L:= K[nextvalue](); x:= add(L[i]*10^(d-i), i=1..d);
if isprime(x) then A:= A, x fi od od: A; # K. D. Bajpai, Sep 08 2014
MATHEMATICA
Select[Prime[Range[50000]], Intersection[IntegerDigits[#], {0, 1, 2, 3, 5, 7, 8}] == {} &] (* K. D. Bajpai, Sep 08 2014 *)
CROSSREFS
Cf. A107665 (numbers with semiprime digits), A001358 (semiprimes), A051416 (primes whose digits are all composite), A020466 (primes with digits 4 and 9 only), A093402 (primes of form 44...9), A093945 (primes of form 499...).
Sequence in context: A087700 A344827 A345314 * A020466 A142420 A319060
KEYWORD
base,nonn
AUTHOR
Rick L. Shepherd, May 19 2005
EXTENSIONS
a(35)-a(38) from K. D. Bajpai, Sep 08 2014
STATUS
approved