OFFSET
0,2
FORMULA
G.f. satisfies: A(x) = Sum_{n>=0} x^n * A(x)^((n+1)*(n+2)/4).
G.f. A(x) = (1/x)*series-reversion(x/G(x)^2) and thus A(x) = G(x*A(x))^2 where G(x) is the g.f. of A107590.
EXAMPLE
A = A^(1/2) + x*A^(3/2) + x^2*A^(6/2) + x^3*A^(10/2) +...
= 1 + 2*x + 7*x^2 + 32*x^3 + 169*x^4 + 976*x^5 + 5989*x^6 +...
PROG
(PARI) {a(n)=local(A=1+x+x*O(x^n)); for(k=1, n, A=1+sum(j=1, n, x^j*A^((j+1)*(j+2)/2-1)+x*O(x^n))); polcoeff(A^2, n)}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, May 17 2005
STATUS
approved