login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A107456 Number of nonisomorphic generalized Petersen graphs P(n,k) with girth 7 on n vertices for 1<=k<=Floor[(n-1)/2]. 0
1, 1, 1, 1, 2, 1, 2, 1, 3, 2, 2, 0, 2, 2, 2, 4, 2, 1, 2, 2, 2, 2, 5, 1, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 1, 5, 2, 2, 2, 2, 1, 2, 5, 2, 2, 2, 1, 2, 2, 5, 2, 2, 1, 2, 2, 2, 5, 2, 1, 2, 2, 2, 2, 5, 1, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 1, 5, 2, 2, 2, 2, 1, 2, 5, 2, 2 (list; graph; refs; listen; history; text; internal format)
OFFSET

13,5

COMMENTS

The generalized Petersen graph P(n,k) is a graph with vertex set $V(P(n,k)) = \{u_0,u_1,\dots,u_{n-1},v_0,v_1,\dots,v_{n-1}\}$ and edge set $E(P(n,k)) = \{u_i u_{i+1}, u_i v_i, v_i v_{i+k} : i=0,\dots,n-1\},$ where the subscripts are to be read modulo $n$.

REFERENCES

I. Z. Bouwer, W. W. Chernoff, B. Monson and Z. Star, The Foster Census (Charles Babbage Research Centre, 1988), ISBN 0-919611-19-2.

M. Watkins, A theorem on Tait colorings with an application to the generalized Petersen graphs, J. Combin. Theory 6 (1969), 152-164.

LINKS

Table of n, a(n) for n=13..100.

Marko Boben, Tomaz Pisanski, Arjana Zitnik, I-graphs and the corresponding configurations, Preprint series (University of Ljubljana, IMFM), Vol. 42 (2004), 939 (ISSN 1318-4865).

EXAMPLE

A generalized Petersen graph P(n,k) has girth 7 if and only if it has girth more than 6 and (n=7k or 2n=7*k or 3n=7k or k=4 or 4k=n+1 or 4=n-k or 4k=n-1 or 4k=2n-1 or 3k=n+2 or 3=n-2k or 3k=n-2)

The smallest generalized Petersen graph with girth 7 is P(13,5)

CROSSREFS

Cf. A077105, A107452-A107460.

Sequence in context: A205696 A029635 A203301 * A165112 A256106 A077480

Adjacent sequences:  A107453 A107454 A107455 * A107457 A107458 A107459

KEYWORD

nonn

AUTHOR

Marko Boben (Marko.Boben(AT)fmf.uni-lj.si), Tomaz Pisanski and Arjana Zitnik (Arjana.Zitnik(AT)fmf.uni-lj.si), May 26 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified February 19 10:31 EST 2018. Contains 299330 sequences. (Running on oeis4.)