

A107452


Number of nonisomorphic bipartite generalized Petersen graphs P(2n,k) on 4n vertices for 1<=k<n.


9



1, 1, 2, 2, 3, 2, 3, 3, 4, 3, 6, 4, 5, 6, 5, 5, 7, 5, 8, 8, 7, 6, 10, 8, 8, 9, 10, 8, 13, 8, 9, 12, 10, 12, 14, 10, 11, 14, 14, 11, 17, 11, 14, 17, 13, 12, 18, 14, 16
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

2,3


COMMENTS

The generalized Petersen graph P(n,k) is a graph with vertex set V(P(n,k)) = {u_0,u_1,...,u_{n1},v_0,v_1,...,v_{n1}} and edge set E(P(n,k)) = {u_i u_{i+1}, u_i v_i, v_i v_{i+k} : i=0,...,n1}, where the subscripts are to be read modulo n.


REFERENCES

I. Z. Bouwer, W. W. Chernoff, B. Monson and Z. Star, The Foster Census (Charles Babbage Research Centre, 1988), ISBN 0919611192.


LINKS

Table of n, a(n) for n=2..50.
Marko Boben, Tomaz Pisanski and Arjana Zitnik, Igraphs and the corresponding configurations, Preprint series (University of Ljubljana, IMFM), Vol. 42 (2004), 939 (ISSN 13184865).
M. Watkins, A theorem on Tait colorings with an application to the generalized Petersen graphs, J. Combin. Theory 6 (1969), 152164.


EXAMPLE

A generalized Petersen graph P(n,k) is bipartite if and only if n is even and k is odd.
The smallest bipartite generalized Petersen graph is P(4,1)


CROSSREFS

Cf. A077105, A107453A107460.
Sequence in context: A071330 A092333 A303297 * A205018 A286716 A029213
Adjacent sequences: A107449 A107450 A107451 * A107453 A107454 A107455


KEYWORD

nonn


AUTHOR

Marko Boben (Marko.Boben(AT)fmf.unilj.si), Tomaz Pisanski and Arjana Zitnik (Arjana.Zitnik(AT)fmf.unilj.si), May 26 2005


STATUS

approved



