This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A107452 Number of nonisomorphic bipartite generalized Petersen graphs P(2n,k) on 4n vertices for 1<=k
 1, 1, 2, 2, 3, 2, 3, 3, 4, 3, 6, 4, 5, 6, 5, 5, 7, 5, 8, 8, 7, 6, 10, 8, 8, 9, 10, 8, 13, 8, 9, 12, 10, 12, 14, 10, 11, 14, 14, 11, 17, 11, 14, 17, 13, 12, 18, 14, 16 (list; graph; refs; listen; history; text; internal format)
 OFFSET 2,3 COMMENTS The generalized Petersen graph P(n,k) is a graph with vertex set V(P(n,k)) = {u_0,u_1,...,u_{n-1},v_0,v_1,...,v_{n-1}} and edge set E(P(n,k)) = {u_i u_{i+1}, u_i v_i, v_i v_{i+k} : i=0,...,n-1}, where the subscripts are to be read modulo n. REFERENCES I. Z. Bouwer, W. W. Chernoff, B. Monson and Z. Star, The Foster Census (Charles Babbage Research Centre, 1988), ISBN 0-919611-19-2. LINKS Marko Boben, Tomaz Pisanski and Arjana Zitnik, I-graphs and the corresponding configurations, Preprint series (University of Ljubljana, IMFM), Vol. 42 (2004), 939 (ISSN 1318-4865). M. Watkins, A theorem on Tait colorings with an application to the generalized Petersen graphs, J. Combin. Theory 6 (1969), 152-164. EXAMPLE A generalized Petersen graph P(n,k) is bipartite if and only if n is even and k is odd. The smallest bipartite generalized Petersen graph is P(4,1) CROSSREFS Cf. A077105, A107453-A107460. Sequence in context: A071330 A092333 A303297 * A205018 A286716 A029213 Adjacent sequences:  A107449 A107450 A107451 * A107453 A107454 A107455 KEYWORD nonn AUTHOR Marko Boben (Marko.Boben(AT)fmf.uni-lj.si), Tomaz Pisanski and Arjana Zitnik (Arjana.Zitnik(AT)fmf.uni-lj.si), May 26 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 18 16:13 EDT 2018. Contains 313833 sequences. (Running on oeis4.)