login
A107451
Let m = 5 and set M = {{0, 1, 0, 0, 0, 0}, {0, 0, 1, 0, 0, 0}, {0, 0, 0, 1, 0, 0}, {0, 0, 0, 0, 1, 0}, {0, 0, 0, 0, 0, 1}, {-1, m, (m + 1), -m*(m + 1), -m, (m + 2)}}. Let v[0] = {0, 1, 1, 2, 3, 5}, v[n] = M.v[n - 1]. Then a = Abs[v[n][[1]].
0
1, 1, 2, 3, 5, 29, 302, 2092, 12221, 66179, 341350, 1705958, 8333070, 40017287, 189643693, 889303635, 4134575230, 19086260759, 87581455636, 399845651745, 1817488787127, 8230050719153, 37144327008467, 167153266777585
OFFSET
0,3
COMMENTS
Based on a Markov chain with characteristic polynomial 1 - m* x - (m + 1) *x^2 + m*(m + 1)* x^3 + m* x^4 - (m + 2)* x^5 + x^6 with m=5.
This is a doubled Bombieri polynomial with real roots {{x -> -1.64378}, {x -> -0.425321}, {x -> 0.201585}, {x -> 0.395849}, {x -> 4.10318}, {x -> 4.36848}}. The base vector is Fibonacci-like.
FORMULA
G.f.: (10*x^10-44*x^9-86*x^8+246*x^7+198*x^6+58*x^5+18*x^4+24*x^3-6*x+1) / (x^6-5*x^5-6*x^4+30*x^3+5*x^2-7*x+1). - Colin Barker, May 17 2013
MATHEMATICA
M = {{0, 1, 0, 0, 0, 0}, {0, 0, 1, 0, 0, 0}, {0, 0, 0, 1, 0, 0}, {0, 0, 0, 0, 1, 0}, {0, 0, 0, 0, 0, 1}, {-1, m, (m + 1), -m*(m + 1), -m, (m + 2)}} Det[M - x*IdentityMatrix[6]] m = 5; NSolve[Det[M - x*IdentityMatrix[6]] == 0, x] v[0] = {0, 1, 1, 2, 3, 5} v[n_] := v[n] = M.v[n - 1] a = Table[Abs[v[n][[1]]], {n, 1, 50}]
CROSSREFS
Sequence in context: A062167 A358896 A279189 * A093490 A073309 A226124
KEYWORD
nonn,easy
AUTHOR
Roger L. Bagula, May 26 2005
EXTENSIONS
Edited by N. J. A. Sloane, Jun 16 2007
STATUS
approved