login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A107389 Expansion of x*(1-6*x+7*x^2)/( (1-x)*(1+x)*(1-5*x+x^2)). 2
0, 1, -1, 2, 5, 31, 144, 697, 3335, 15986, 76589, 366967, 1758240, 8424241, 40362959, 193390562, 926589845, 4439558671, 21271203504, 101916458857, 488311090775, 2339638995026, 11209883884349, 53709780426727, 257339018249280, 1232985310819681, 5907587535849119 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

LINKS

Table of n, a(n) for n=0..26.

Index entries for linear recurrences with constant coefficients, signature (5,0,-5,1).

FORMULA

a(n)-a(n-2) = A030221(n-3), n>2. - R. J. Mathar, Dec 17 2017

MATHEMATICA

m = 5 M = {{0, 1, 0, 0}, {0, 0, 1, 0}, {0, 0, 0, 1}, {1, m, 0, - m) Expand[Det[M - x*IdentityMatrix[4]]] (*-1 - 5 x + 5 x^3 + x^4*) NSolve[Det[M - x*IdentityMatrix[4]] == 0, x] v[1] = {0, 1, 1, 2}; v[n_] := v[n] = M . v[n - 1] digits = 50; aa = Table[Abs[v[n][[1]], {n, 1, digits}]

Clear[M, m, v, aa] (*A107389*)m = 5; M = {{0, 1, 0, 0}, {0, 0, 1, 0}, {0, 0, 0, 1}, {1, m, 0, - m}}; Expand[Det[M - x*IdentityMatrix[4]]] ; NSolve[Det[M - x*IdentityMatrix[4]] == 0, x] ; v[1] = {0, 1, 1, 2}; v[n_] := v[n] = M . v[n - 1]; digits = 50; aa = Table[Abs[v[n][[1]]], {n, 1, digits}]

LinearRecurrence[{5, 0, -5, 1}, {0, 1, -1, 2}, 30] (* Harvey P. Dale, Sep 17 2020 *)

PROG

(PARI) concat(0, Vec((1-6*x+7*x^2)/(1-x)/(1+x)/(1-5*x+x^2)+O(x^98))) \\ Charles R Greathouse IV, Jan 25 2012

CROSSREFS

Sequence in context: A059086 A215168 A266478 * A261750 A189559 A077483

Adjacent sequences:  A107386 A107387 A107388 * A107390 A107391 A107392

KEYWORD

sign,easy

AUTHOR

Roger L. Bagula, May 24 2005, corrected Sep 04 2008

EXTENSIONS

Irregular sign at a(2) switched by R. J. Mathar, Jan 24 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 6 10:58 EDT 2022. Contains 357263 sequences. (Running on oeis4.)