login
A107300
a(n) = 2*a(n-1) + 2*a(n-2) - 2*a(n-3) with a(0)=3, a(1)=2, a(3)=8.
2
3, 2, 8, 14, 40, 92, 236, 576, 1440, 3560, 8848, 21936, 54448, 135072, 335168, 831584, 2063360, 5119552, 12702656, 31517696, 78201600, 194033280, 481434368, 1194532096, 2963866368, 7353928192
OFFSET
0,1
FORMULA
G.f.: (3-4*x-2*x^2)/(1-2*x-2*x^2+2*x^3). [Sep 28 2009]
a(n) = 3*A077937(n) - 4*A077937(n-1) - 2*A077937(n-2). [Sep 28 2009]
a(n) = 2*(b1^n + b2^n + b3^n)/(b1 + b2 + b3), where b1, b2, and b3 and the roots of x^3 = 2*x^2 + 2*x - 2.
MATHEMATICA
LinearRecurrence[{2, 2, -2}, {3, 2, 8}, 46]
PROG
(Magma) I:=[3, 2, 8]; [n le 3 select I[n] else 2*(Self(n-1) +Self(n-2) -Self(n-3)): n in [1..46]]; // G. C. Greubel, May 02 2022
(SageMath)
def A107300_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( (3-4*x-2*x^2)/(1-2*x-2*x^2+2*x^3) ).list()
A107300_list(45) # G. C. Greubel, May 02 2022
CROSSREFS
Cf. A077937.
Sequence in context: A301903 A165660 A171634 * A285787 A047946 A066045
KEYWORD
nonn,easy
AUTHOR
Roger L. Bagula, May 20 2005
EXTENSIONS
Definition replaced by recurrence by the Associate Editors of the OEIS, Sep 28 2009
STATUS
approved