The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A107296 Three-symbol substitution with real Pisot characteristic polynomial: x^3-3*x^2-x-2. 0

%I

%S 1,3,1,1,2,1,3,1,1,1,3,1,1,1,3,1,3,1,1,2,1,3,1,1,1,3,1,1,1,3,1,1,2,1,

%T 3,1,1,1,3,1,1,1,3,1,1,2,1,3,1,1,2,1,3,1,1,1,3,1,1,1,3,1,3,1,1,2,1,3,

%U 1,1,1,3,1,1,1,3,1,1,2,1,3,1,1,1,3,1,1,1,3,1,1,2,1,3,1,1,1,3,1,1,1,3,1,3,1

%N Three-symbol substitution with real Pisot characteristic polynomial: x^3-3*x^2-x-2.

%C Bombieri type Real Roots: {{x -> -0.860806}, {x -> 0.745898}, {x -> 3.11491}} Matrix isomer: 1->{3},{2->{2,1,2,2},3->{1,2} I found this while trying to get a substitution for the Frougny real root characteristic polynomial: x^3-3*x^2+1

%F 1->{1, 3, 1, 1}, 2->{1, 3}, 2->{2}

%t s[1] = {1, 3, 1, 1}; s[2] = {1, 3}; s[3] = {2}; t[a_] := Flatten[s /@ a]; p[0] = {1}; p[1] = t[p[0]]; p[n_] := t[p[n - 1]] aa = p[4]

%Y Cf. A106748, A106749.

%K nonn,uned

%O 0,2

%A _Roger L. Bagula_, May 20 2005

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 8 01:12 EST 2022. Contains 358672 sequences. (Running on oeis4.)