The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A107296 Three-symbol substitution with real Pisot characteristic polynomial: x^3-3*x^2-x-2. 0
 1, 3, 1, 1, 2, 1, 3, 1, 1, 1, 3, 1, 1, 1, 3, 1, 3, 1, 1, 2, 1, 3, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 2, 1, 3, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 2, 1, 3, 1, 1, 2, 1, 3, 1, 1, 1, 3, 1, 1, 1, 3, 1, 3, 1, 1, 2, 1, 3, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 2, 1, 3, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 2, 1, 3, 1, 1, 1, 3, 1, 1, 1, 3, 1, 3, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Bombieri type Real Roots: {{x -> -0.860806}, {x -> 0.745898}, {x -> 3.11491}} Matrix isomer: 1->{3},{2->{2,1,2,2},3->{1,2} I found this while trying to get a substitution for the Frougny real root characteristic polynomial: x^3-3*x^2+1 LINKS FORMULA 1->{1, 3, 1, 1}, 2->{1, 3}, 2->{2} MATHEMATICA s[1] = {1, 3, 1, 1}; s[2] = {1, 3}; s[3] = {2}; t[a_] := Flatten[s /@ a]; p[0] = {1}; p[1] = t[p[0]]; p[n_] := t[p[n - 1]] aa = p[4] CROSSREFS Cf. A106748, A106749. Sequence in context: A157229 A242248 A107297 * A080847 A326406 A334006 Adjacent sequences: A107293 A107294 A107295 * A107297 A107298 A107299 KEYWORD nonn,uned AUTHOR Roger L. Bagula, May 20 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 27 06:50 EST 2022. Contains 358362 sequences. (Running on oeis4.)