login
A107292
3-symbol substitution with characteristic real root polynomial:m x^3-2*x^2-2*x+2.
0
1, 3, 3, 1, 2, 2, 1, 3, 3, 1, 3, 1, 3, 3, 1, 3, 1, 3, 3, 1, 2, 2, 1, 3, 3, 1, 2, 1, 3, 3, 1, 2, 2, 1, 3, 3, 1, 2, 1, 3, 3, 1, 2, 2, 1, 3, 3, 1, 3, 1, 3, 3, 1, 3, 1, 3, 3, 1, 2, 2, 1, 3, 3, 1, 3, 1, 3, 1, 3, 3, 1, 2, 2, 1, 3, 3, 1, 3, 1, 3, 3, 1, 3, 1, 3, 3, 1, 2, 2, 1, 3, 3, 1, 3, 1, 3, 1, 3, 3, 1, 2, 2, 1, 3, 3
OFFSET
0,2
COMMENTS
This is a real root cubic:{{x -> -1.17009}, {x -> 0.688892}, {x -> 2.48119}} like the Bombieri aperiodic: a Bombieri silver Isomer substitution: ( same characteristic polynomial) 1->{3},2->{2,1,2},3->{1,2,2,1}
FORMULA
1->{1, 3, 3, 1}, 2->{3, 1, 3}, 3->{2}
MATHEMATICA
s[1] = {1, 3, 3, 1}; s[2] = {3, 1, 3}; s[3] = {2}; t[a_] := Flatten[s /@ a]; p[0] = {1}; p[1] = t[p[0]]; p[n_] := t[p[n - 1]] aa = p[5]
CROSSREFS
Sequence in context: A317413 A359838 A110628 * A225331 A004550 A096836
KEYWORD
nonn,uned
AUTHOR
Roger L. Bagula, May 20 2005
STATUS
approved