login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation to keep the OEIS running. In 2018 we replaced the server with a faster one, added 20000 new sequences, and reached 7000 citations (often saying "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A107288 Primes whose digit sum is a square. 8
13, 31, 79, 97, 103, 211, 277, 349, 367, 439, 457, 547, 619, 673, 691, 709, 727, 853, 907, 997, 1021, 1069, 1087, 1201, 1249, 1429, 1447, 1483, 1609, 1627, 1663, 1699, 1753, 1789, 1861, 1879, 1933, 1951, 1987, 2011, 2239, 2293, 2347, 2383, 2437, 2473, 2617, 2671 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Primes in A028839. [K. D. Bajpai, Jul 08 2014]

From Altug Alkan and Waldemar Puszkarz, Apr 10 2016: All terms are congruent to 1 mod 6. Proof: For n > 2, prime(n) is 1 or 5 mod 6. If p is 5 mod 6, then it is of the form 3*k-1. For numbers of this form, the sum of digits is also of this form, as can be seen through the kind of reasoning used in proving that numbers divisible by 3 have the sum of digits divisible by 3. However, 3*k-1 can never be a square, meaning n^2+1 is never divisible by 3: any n is equal to one of 0, 1, 2 mod 3, thus by the rules of modular arithmetic, n^2+1 is 1 or 2 mod 3, never 0. Hence p must be congruent to 1 mod 6.

LINKS

K. D. Bajpai, Table of n, a(n) for n = 1..10000

EXAMPLE

79 is in the sequence because it is prime. Also, (7 + 9) = 16 = 4^2.

997 is in the sequence because it is prime. Also, (9 + 9 + 7) = 25 = 5^2.

MAPLE

with(numtheory): A107288:= proc() local a; a:=add(i, i = convert((n), base, 10))(n); if isprime(n) and root(a, 2)=floor(root(a, 2)) then RETURN (n); fi; end: seq(A107288 (), n=1..5000); # K. D. Bajpai, Jul 08 2014

MATHEMATICA

bb = {}; Do[If[IntegerQ[Sqrt[Apply[Plus, IntegerDigits[p = Prime[n]]]]], bb = Append[bb, p]], {n, 500}]; bb

PROG

(PARI) lista(nn) = {forprime(p=2, nn, if (issquare(sumdigits(p)), print1(p, ", ")); ); } \\ Michel Marcus, Apr 09 2016

CROSSREFS

Cf. A000040, A007953, A028839, A048519.

Cf. A244863 (Semiprimes whose digit sum is square).

Sequence in context: A217614 A158723 A211116 * A095379 A160772 A271575

Adjacent sequences:  A107285 A107286 A107287 * A107289 A107290 A107291

KEYWORD

nonn,base

AUTHOR

Zak Seidov, May 20 2005

EXTENSIONS

Terms a(47) and a(48) added by K. D. Bajpai, Jul 08 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 17 09:43 EST 2018. Contains 318193 sequences. (Running on oeis4.)