login
A107246
Sum of squares of octanacci numbers (Fibonacci 8-step numbers).
7
0, 0, 0, 0, 0, 0, 0, 1, 2, 6, 22, 86, 342, 1366, 5462, 21846, 86871, 345952, 1378208, 5490992, 21877296, 87163696, 347276080, 1383600944, 5512434480, 21962292529, 87500852554, 348615720590, 1388934122190, 5533708922574, 22047074027470
OFFSET
0,9
COMMENTS
Primes in this sequence include: a(8) = 2, a(17) = 280927. Semiprimes in this sequence include: a(9) = 6 = 2 * 3, a(10) = 22 = 2 * 11, a(11) = 86 = 2 * 43, a(13) = 1366 = 2 * 683, a(14) = 5462 = 2 * 2731, a(24) = 5512110374 = 2 * 2756055187, a(25) = 21961968423 = 3 * 7320656141, a(36) = 88177707994468342 = 2 * 44088853997234171.
LINKS
Eric Weisstein's World of Mathematics, Fibonacci n-Step Number.
Index entries for linear recurrences with constant coefficients, signature (3, 2, 4, 8, 14, 30, 60, 120, -266, -24, -38, -32, 120, -22, -50, -64, 136, 16, 30, 22, -68, 0, 10, 18, -28, 0, -6, -8, 14, 0, 0, -2, 2, 0, 0, 1, -1).
FORMULA
a(n) = F_8(0)^2 + F_8(1)^2 + ... F_8(n)^2, where F_8(n) = A079262(n).
MATHEMATICA
Accumulate[LinearRecurrence[{1, 1, 1, 1, 1, 1, 1, 1}, {0, 0, 0, 0, 0, 0, 0, 1}, 40]^2] (* Harvey P. Dale, May 25 2014 *)
LinearRecurrence[{3, 2, 4, 8, 14, 30, 60, 120, -266, -24, -38, -32, 120, -22, -50, -64, 136, 16, 30, 22, -68, 0, 10, 18, -28, 0, -6, -8, 14, 0, 0, -2, 2, 0, 0, 1, -1}, {0, 0, 0, 0, 0, 0, 0, 1, 2, 6, 22, 86, 342, 1366, 5462, 21846, 86871, 345952, 1378208, 5490992, 21877296, 87163696, 347276080, 1383600944, 5512434480, 21962292529, 87500852554, 348615720590, 1388934122190, 5533708922574, 22047074027470, 87838639467470, 349961474550734, 1394295671696334, 5555069815204303, 22132178477202944, 88177707994792448}, 31] (* Ray Chandler, Aug 02 2015 *)
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Jonathan Vos Post, May 27 2005
EXTENSIONS
Corrected from a(16) on by R. J. Mathar, Aug 11 2009
STATUS
approved