login
A107244
Sum of squares of hexanacci numbers (A001592, Fibonacci 6-step numbers).
5
0, 0, 0, 0, 0, 1, 2, 6, 22, 86, 342, 1366, 5335, 20960, 82464, 324528, 1277104, 5025200, 19770800, 77789489, 306071370, 1204272270, 4738336974, 18643463374, 73354544590, 288620849614, 1135607911375, 4468164041216, 17580442344960
OFFSET
0,7
COMMENTS
Primes include: a(6) = 2. Semiprimes include a(7) = 6 = 2 * 3, a(8) = 22 = 2 * 11, a(9) = 86 = 2 * 43, a(11) = 1366 = 2 * 683, a(19) = 77789489 = 3989 * 19501, a(23) = 18643463374 = 2 * 9321731687,
LINKS
Eric Weisstein's World of Mathematics, Fibonacci n-Step Number.
Index entries for linear recurrences with constant coefficients, signature (3, 2, 4, 6, 14, 28, -67, -9, -8, 28, -8, -12, 20, 5, 5, -10, 0, 2, -2, 0, -1, 1).
FORMULA
a(n) = F_6(0)^2 + F_6(1)^2 + ... F_6(n)^2, where F_6(n) = A001592(n). a(0) = 0, a(n+1) = a(n) + A001592(n).
a(n)= 3*a(n-1) +2*a(n-2) +4*a(n-3) +6*a(n-4) +14*a(n-5) +28*a(n-6) -67*a(n-7) -9*a(n-8) -8*a(n-9) +28*a(n-10) -8*a(n-11) -12*a(n-12) +20*a(n-13) +5*a(n-14) +5*a(n-15) -10*a(n-16) +2*a(n-18) -2*a(n-19) -a(n-21) +a(n-22). [From R. J. Mathar, Aug 11 2009]
EXAMPLE
a(0) = 0 = 0^2
a(1) = 0 = 0^2 + 0^2
a(2) = 0 = 0^2 + 0^2 + 0^2
a(3) = 0 = 0^2 + 0^2 + 0^2 + 0^2
a(4) = 0 = 0^2 + 0^2 + 0^2 + 0^2 + 0^2
a(5) = 1 = 0^2 + 0^2 + 0^2 + 0^2 + 0^2 + 1^2
a(6) = 2 = 0^2 + 0^2 + 0^2 + 0^2 + 0^2 + 1^2 + 1^2
a(7) = 6 = 0^2 + 0^2 + 0^2 + 0^2 + 0^2 + 1^2 + 1^2 + 2^2
a(8) = 22 = 0^2 + 0^2 +0^2 + 0^2 + 0^2 + 1^2 + 1^2 + 2^2 + 4^2
MATHEMATICA
Accumulate[LinearRecurrence[{1, 1, 1, 1, 1, 1}, {0, 0, 0, 0, 0, 1}, 50]^2] (* Harvey P. Dale, Jan 19 2012 *)
LinearRecurrence[{3, 2, 4, 6, 14, 28, -67, -9, -8, 28, -8, -12, 20, 5, 5, -10, 0, 2, -2, 0, -1, 1}, {0, 0, 0, 0, 0, 1, 2, 6, 22, 86, 342, 1366, 5335, 20960, 82464, 324528, 1277104, 5025200, 19770800, 77789489, 306071370, 1204272270}, 29] (* Ray Chandler, Aug 02 2015 *)
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Jonathan Vos Post, May 19 2005
STATUS
approved