This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A107233 An inverse Chebyshev transform of n^3. 1
 0, 1, 8, 30, 96, 270, 720, 1820, 4480, 10710, 25200, 58212, 133056, 300300, 672672, 1492920, 3294720, 7220070, 15752880, 34179860, 73902400, 159074916, 341429088, 730122120, 1557593856, 3312591100, 7030805600, 14883258600, 31451414400 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Image of n^3 under the mapping of g(x)->(1/sqrt(1-4x^2))g(xc(x^2)) where c(x) is the g.f. of A000108. LINKS FORMULA G.f.: 4x(sqrt(1-4x^2)-1)^2(4x+1)/(sqrt(1-4x^2)(sqrt(1-4x^2)+2x-1)^4); a(n)=sum{k=0..floor(n/2), binomial(n, k)(n-2k)^3}; Conjecture: (n-1)*a(n)+4*(n-4)*a(n-1) -4*(n+4)*a(n-2) +16*(2-n)*a(n-3)=0. - R. J. Mathar, Nov 09 2012 From Vaclav Kotesovec, Nov 04 2017: (Start) G.f.: x*(1 + 4*x) / ((1 - 2*x)^(5/2) * sqrt(1 + 2*x)). a(n) ~ 2^(n + 1/2) * n^(3/2) / sqrt(Pi). (End) MATHEMATICA CoefficientList[Series[x*(1 + 4*x) / ((1 - 2*x)^(5/2) * Sqrt[1 + 2*x]), {x, 0, 30}], x] (* Vaclav Kotesovec, Nov 04 2017 *) CROSSREFS Cf. A100071, A001787. Sequence in context: A232772 A213776 A113751 * A098213 A163613 A279217 Adjacent sequences:  A107230 A107231 A107232 * A107234 A107235 A107236 KEYWORD easy,nonn AUTHOR Paul Barry, May 13 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 19 21:28 EDT 2019. Contains 328244 sequences. (Running on oeis4.)