login
A107177
Primes of the form 3x^2+23y^2.
2
3, 23, 71, 131, 167, 239, 443, 587, 599, 683, 1163, 1223, 1319, 1427, 1451, 1499, 1559, 1619, 1979, 2027, 2099, 2243, 2339, 2447, 2543, 2579, 2663, 2927, 3083, 3167, 3251, 3347, 3359, 3371, 3491, 3623, 3659, 3767, 3911, 4079, 4463, 4583
OFFSET
1,1
COMMENTS
Discriminant=-276. See A107132 for more information.
LINKS
Vincenzo Librandi and Ray Chandler, Table of n, a(n) for n = 1..10000 [First 1000 terms from Vincenzo Librandi]
N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references)
MATHEMATICA
QuadPrimes2[3, 0, 23, 10000] (* see A106856 *)
PROG
(PARI) list(lim)=my(v=List(), w, t); for(x=0, sqrtint(lim\3), w=3*x^2; for(y=0, sqrtint((lim-w)\23), if(isprime(t=w+23*y^2), listput(v, t)))); Set(v) \\ Charles R Greathouse IV, Feb 10 2017
CROSSREFS
Sequence in context: A196325 A003531 A121984 * A096207 A163210 A163211
KEYWORD
nonn,easy
AUTHOR
T. D. Noe, May 13 2005
STATUS
approved