%I #19 Feb 10 2017 11:24:04
%S 2,41,83,131,233,347,809,827,857,953,1019,1091,1097,1163,1217,1283,
%T 1601,1619,1667,1979,2081,2129,2339,2393,2417,2609,2801,2969,3011,
%U 3137,3251,3299,3539,3659,3923,3929,4001,4091,4241,4451,4523,4721
%N Primes of the form 2x^2 + 33y^2.
%C Discriminant = -264. See A107132 for more information.
%H Vincenzo Librandi and Ray Chandler, <a href="/A107174/b107174.txt">Table of n, a(n) for n = 1..10000</a> [First 1000 terms from Vincenzo Librandi]
%H N. J. A. Sloane et al., <a href="https://oeis.org/wiki/Binary_Quadratic_Forms_and_OEIS">Binary Quadratic Forms and OEIS</a> (Index to related sequences, programs, references)
%t QuadPrimes2[2, 0, 33, 10000] (* see A106856 *)
%o (PARI) list(lim)=my(v=List(),w,t); for(x=1, sqrtint(lim\2), w=2*x^2; for(y=0, sqrtint((lim-w)\33), if(isprime(t=w+33*y^2), listput(v,t)))); Set(v) \\ _Charles R Greathouse IV_, Feb 10 2017
%K nonn,easy
%O 1,1
%A _T. D. Noe_, May 13 2005