%I #19 Feb 10 2017 09:52:40
%S 3,97,163,331,379,499,577,859,1153,1171,1321,1483,1609,1753,1873,2083,
%T 2137,2161,2203,2347,2539,2689,2707,2731,2953,2971,3067,3169,3433,
%U 3529,3697,3793,3931,4027,4129,4339,4651,4657,4723,4801,4987,5113
%N Primes of the form 3x^2 + 22y^2.
%C Discriminant = -264. See A107132 for more information.
%H Vincenzo Librandi and Ray Chandler, <a href="/A107173/b107173.txt">Table of n, a(n) for n = 1..10000</a> [First 1000 terms from Vincenzo Librandi]
%H N. J. A. Sloane et al., <a href="https://oeis.org/wiki/Binary_Quadratic_Forms_and_OEIS">Binary Quadratic Forms and OEIS</a> (Index to related sequences, programs, references)
%t QuadPrimes2[3, 0, 22, 10000] (* see A106856 *)
%o (PARI) list(lim)=my(v=List(),w,t); for(x=1, sqrtint(lim\3), w=3*x^2; for(y=0, sqrtint((lim-w)\22), if(isprime(t=w+22*y^2), listput(v,t)))); Set(v) \\ _Charles R Greathouse IV_, Feb 10 2017
%K nonn,easy
%O 1,1
%A _T. D. Noe_, May 13 2005