%I #18 Feb 09 2017 14:53:44
%S 53,257,269,397,401,421,617,757,773,929,1021,1109,1181,1237,1433,1609,
%T 1621,1697,1753,1873,2069,2113,2237,2381,2621,2729,2777,2797,2897,
%U 2953,3041,3257,3433,3613,3677,3701,3733,3793,3853,3877,4013,4093
%N Primes of the form x^2 + 44y^2.
%C Discriminant = -176. See A107132 for more information.
%H Vincenzo Librandi and Ray Chandler, <a href="/A107150/b107150.txt">Table of n, a(n) for n = 1..10000</a> [First 1000 terms from Vincenzo Librandi]
%H N. J. A. Sloane et al., <a href="https://oeis.org/wiki/Binary_Quadratic_Forms_and_OEIS">Binary Quadratic Forms and OEIS</a> (Index to related sequences, programs, references)
%t QuadPrimes2[1, 0, 44, 10000] (* see A106856 *)
%o (PARI) list(lim)=my(v=List(),w,t); for(x=1, sqrtint(lim\1), w=x^2; for(y=0, sqrtint((lim-w)\44), if(isprime(t=w+44*y^2), listput(v,t)))); Set(v) \\ _Charles R Greathouse IV_, Feb 09 2017
%K nonn,easy
%O 1,1
%A _T. D. Noe_, May 13 2005