%I #18 Feb 09 2017 14:52:40
%S 11,47,103,163,199,311,419,499,587,599,683,863,883,907,911,991,1087,
%T 1123,1291,1307,1367,1439,1543,1567,1571,1699,1907,2003,2039,2539,
%U 2579,2671,2731,2803,2843,2927,3191,3259,3323,3391,3463,3499,3623
%N Primes of the form 4x^2 + 11y^2.
%C Discriminant = -176. See A107132 for more information.
%H Vincenzo Librandi and Ray Chandler, <a href="/A107149/b107149.txt">Table of n, a(n) for n = 1..10000</a> [First 1000 terms from Vincenzo Librandi]
%H N. J. A. Sloane et al., <a href="https://oeis.org/wiki/Binary_Quadratic_Forms_and_OEIS">Binary Quadratic Forms and OEIS</a> (Index to related sequences, programs, references)
%t QuadPrimes2[4, 0, 11, 10000] (* see A106856 *)
%o (PARI) list(lim)=my(v=List(),w,t); for(x=0, sqrtint(lim\4), w=4*x^2; for(y=1, sqrtint((lim-w)\11), if(isprime(t=w+11*y^2), listput(v,t)))); Set(v) \\ _Charles R Greathouse IV_, Feb 09 2017
%K nonn,easy
%O 1,1
%A _T. D. Noe_, May 13 2005