login
A107092
G.f. A(x) satisfies A(x)^3 = A(x^3) + 3*x.
7
1, 1, -1, 2, -4, 9, -22, 55, -142, 376, -1011, 2758, -7614, 21220, -59630, 168759, -480533, 1375676, -3957075, 11430582, -33144264, 96434321, -281447954, 823734157, -2417092933, 7109265120, -20955593252, 61893804180, -183148075432, 542885589115, -1611809502764, 4792612539375
OFFSET
0,4
COMMENTS
Self-convolution cube is A107093.
LINKS
Ira M. Gessel, The Amdeberhan-Konvalinka Conjecture and Symmetric Functions, Séminaire Lotharingien Comb. (2024). See p. 83 of 109.
EXAMPLE
A(x)^3 = 1 + 3*x + x^3 - x^6 + 2*x^9 - 4*x^12 + 9*x^15 - 22*x^18 +...
A(x^3) = 1 + x^3 - x^6 + 2*x^9 - 4*x^12 + 9*x^15 - 22*x^18+...
PROG
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=(subst(A, x, x^3)+3*x+x*O(x^n))^(1/3)); polcoeff(A, n, x)}
CROSSREFS
KEYWORD
sign
AUTHOR
Paul D. Hanna, May 11 2005
STATUS
approved