login
Number of odd terms in Zeckendorf representation of n.
8

%I #6 Mar 10 2013 16:06:31

%S 1,0,1,2,1,2,1,0,1,0,1,2,1,2,1,2,3,2,3,2,1,2,1,2,3,2,3,2,1,2,1,2,3,0,

%T 1,0,1,2,1,2,1,0,1,0,1,2,1,2,1,2,3,2,3,2,1,2,1,2,3,2,3,2,1,2,1,2,3,2,

%U 3,2,3,4,3,4,3,2,3,2,3,4,3,4,3,2,3,2,3,4,1,2,1,2,3,2,3,2,1,2,1,2,3,2,3,2,3

%N Number of odd terms in Zeckendorf representation of n.

%C a(n) = A007895(n) - A107015(n).

%C a(A107227(n)) = 0. - _Reinhard Zumkeller_, May 15 2005

%H Reinhard Zumkeller, <a href="/A107016/b107016.txt">Table of n, a(n) for n = 1..10000</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/ZeckendorfRepresentation.html">Zeckendorf Representation</a>

%e n = 77 = 55+21+1 -> a(77) = #{1, 21, 55} = 3;

%e n = 88 = 55+21+8+3+1 -> a(88) = #{1, 3, 21, 55} = 4;

%e n = 99 = 89+8+2 -> a(99) = #{89} = 1.

%o (Haskell)

%o a107016 = length . filter odd . a035516_row

%o -- _Reinhard Zumkeller_, Mar 10 2013

%Y Cf. A000045.

%Y Cf. A107224, A107225, A107226.

%Y Cf. A035516.

%K nonn

%O 1,4

%A _Reinhard Zumkeller_, May 09 2005