login
A107007
Primes of the form 3*x^2+8*y^2.
7
3, 11, 59, 83, 107, 131, 179, 227, 251, 347, 419, 443, 467, 491, 563, 587, 659, 683, 827, 947, 971, 1019, 1091, 1163, 1187, 1259, 1283, 1307, 1427, 1451, 1499, 1523, 1571, 1619, 1667, 1787, 1811, 1907, 1931, 1979, 2003, 2027, 2099, 2243, 2267
OFFSET
1,1
COMMENTS
Discriminant=-96.
Except for 3, also primes of the forms 8*x^2+8*x*y+11*y^2 and 11*x^2+6*x*y+27*y^2. See A140633. - T. D. Noe, May 19 2008
Except for the first member, 3, all the members seem to be terms of A123239 which are prime in both k(i) and k(rho). - A.K. Devaraj, Nov 24 2009
LINKS
Vincenzo Librandi and Ray Chandler, Table of n, a(n) for n = 1..10000 [First 1000 terms from Vincenzo Librandi]
N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references)
FORMULA
Except for 3, the terms are congruent to 11 (mod 24). - T. D. Noe, May 02 2008
MATHEMATICA
QuadPrimes2[3, 0, 8, 10000] (* see A106856 *)
PROG
(Magma) [3] cat[ p: p in PrimesUpTo(3000) | p mod 24 in {11} ]; // Vincenzo Librandi, Jul 23 2012
CROSSREFS
Cf. A139827.
Sequence in context: A308487 A164291 A137690 * A199854 A242384 A225809
KEYWORD
nonn,easy
AUTHOR
T. D. Noe, May 09 2005
STATUS
approved