

A106954


Primes of the form 4x^2+2xy+5y^2, with x and y any integer.


2



5, 7, 11, 17, 43, 47, 61, 73, 131, 137, 139, 149, 191, 199, 229, 233, 239, 251, 263, 277, 283, 311, 347, 349, 359, 389, 397, 443, 457, 461, 463, 467, 499, 541, 557, 577, 587, 613, 617, 631, 643, 647, 653, 691, 719, 727, 739, 757, 761, 769, 809, 821, 823
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Discriminant=76.
Primes p such that the polynomial x^32x2 is irreducible over Zp. The polynomial discriminant is also 76.  T. D. Noe, May 13 2005


LINKS

Vincenzo Librandi and Ray Chandler, Table of n, a(n) for n = 1..10000 [First 1000 terms from Vincenzo Librandi]
N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references)


MATHEMATICA

Union[QuadPrimes2[4, 2, 5, 10000], QuadPrimes2[4, 2, 5, 10000]] (* see A106856 *)


CROSSREFS

Sequence in context: A023241 A174357 A134572 * A027755 A260828 A280651
Adjacent sequences: A106951 A106952 A106953 * A106955 A106956 A106957


KEYWORD

nonn,easy


AUTHOR

T. D. Noe, May 09 2005


STATUS

approved



