login
A106932
Primes of the form x^2 + xy + 17y^2, with x and y nonnegative.
2
17, 19, 23, 29, 37, 47, 59, 71, 73, 83, 89, 103, 107, 127, 131, 149, 157, 163, 167, 173, 181, 193, 199, 211, 223, 227, 241, 257, 263, 277, 283, 293, 307, 317, 349, 359, 389, 397, 431, 439, 449, 457, 461, 467, 479, 491, 509, 523, 557, 569, 571, 601, 613, 617
OFFSET
1,1
COMMENTS
Discriminant = -67.
Different from A191041: 151 decomposes in Q(sqrt(-67)) since 151 = ((1 + 3*sqrt(-67))/2) * ((1 - 3*sqrt(-67))/2); nevertheless, x^2 + xy + 17y^2 = 151 has no nonnegative solution. - Jianing Song, Feb 19 2021
LINKS
Ray Chandler, Table of n, a(n) for n = 1..10000 (first 1000 terms from Vincenzo Librandi)
N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references)
MATHEMATICA
QuadPrimes2[1, 1, 17, 10000] (* see A106856 *)
CROSSREFS
Sequence in context: A187372 A106933 A191041 * A007635 A140947 A205700
KEYWORD
nonn,easy
AUTHOR
T. D. Noe, May 09 2005
STATUS
approved