login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A106856 Primes of the form x^2 + xy + 2y^2, with x and y nonnegative. 575

%I #81 Oct 04 2018 09:56:43

%S 2,11,23,37,43,53,71,79,107,109,127,137,149,151,163,193,197,211,233,

%T 239,263,281,317,331,337,373,389,401,421,431,443,463,487,491,499,541,

%U 547,557,569,599,613,617,641,653,659,673,683,739,743,751,757,809,821

%N Primes of the form x^2 + xy + 2y^2, with x and y nonnegative.

%C Discriminant=-7. Binary quadratic forms ax^2 + bxy + cy^2 have discriminant d = b^2 - 4ac.

%C Consider sequences of primes produced by forms with -100<d<0, abs(b)<=a<=c and gcd(a,b,c)=1. When b is not zero, then there are two cases to consider: (1) nonnegative x and y, and (2) x and y any integers. These restrictions yield 203 sequences of prime numbers, which are organized by discriminant below.

%C The Mathematica function QuadPrimes2 is useful for finding the primes less than "lim" represented by the positive definite quadratic form ax^2 + bxy + cy^2 for any a, b and c satisfying a>0, c>0, and discriminant d<0. It does this by examining all x>=0 and y>=0 in the ellipse ax^2 + bxy + cy^2 <= lim. To find the primes generated by positive and negative x and y, compute the union of QuadPrimes2[a,b,c,lim] and QuadPrimes2[a,-b,c,lim]. - _T. D. Noe_, Sep 01 2009

%C For other programs see the "Binary Quadratic Forms and OEIS" link.

%D David A. Cox, Primes of the Form x^2 + n y^2, Wiley, 1989.

%D L. E. Dickson, History of the Theory of Numbers, Vol. 3, Chelsea, 1923.

%H Zak Seidov and N. J. A. Sloane, <a href="/A106856/b106856.txt">Table of n, a(n) for n = 1..10000</a> (The first 1225 terms were found by Zak Seidov)

%H N. J. A. Sloane et al., <a href="https://oeis.org/wiki/Binary_Quadratic_Forms_and_OEIS">Binary Quadratic Forms and OEIS</a> (Index to related sequences, programs, references)

%t QuadPrimes2[a_, b_, c_, lmt_] := Module[{p, d, lst = {}, xMax, yMax}, d = b^2 - 4a*c; If[a > 0 && c > 0 && d < 0, xMax = Sqrt[lmt/a]*(1+Abs[b]/Floor[Sqrt[-d]])]; Do[ If[ 4c*lmt + d*x^2 >= 0, yMax = ((-b)*x + Sqrt[4c*lmt + d*x^2])/(2c), yMax = 0 ]; Do[p = a*x^2 + b*x*y + c*y^2; If[ PrimeQ[ p] && p <= lmt && !MemberQ[ lst, p], AppendTo[ lst, p]], {y, 0, yMax}], {x, 0, xMax}]; Sort[ lst]];

%t QuadPrimes2[1, 1, 2, 1000]

%t (This is a corrected version of the old, incorrect, program QuadPrimes. - _N. J. A. Sloane_, Jun 15 2014)

%t max = 1000; Table[yy = {y, 1, Floor[Sqrt[8 max - 7 x^2]/4 - x/4]}; Table[ x^2 + x y + 2 y^2, yy // Evaluate], {x, 0, Floor[Sqrt[max]]}] // Flatten // Union // Select[#, PrimeQ]& (* _Jean-François Alcover_, Oct 04 2018 *)

%o (PARI) list(lim)=my(q=Qfb(1,1,2), v=List([2])); forprime(p=2, lim, if(vecmin(qfbsolve(q, p))>0, listput(v,p))); Vec(v) \\ _Charles R Greathouse IV_, Aug 05 2016

%Y Discriminants in the range -3 to -100: A007645 (d=-3), A002313 (d=-4), A045373, A106856 (d=-7), A033203 (d=-8), A056874, A106857 (d=-11), A002476 (d=-12), A033212, A106858-A106861 (d=-15), A002144, A002313 (d=-16), A106862-A106863 (d=-19), A033205, A106864-A106865 (d=-20), A106866-A106869 (d=-23), A033199, A084865 (d=-24), A002476, A106870 (d=-27), A033207 (d=-28), A033221, A106871-A106874 (d=-31), A007519, A007520, A106875-A106876 (d=-32), A106877-A106881 (d=-35), A040117, A068228, A106882 (d=-36), A033227, A106883-A106888 (d=-39), A033201, A106889 (d=-40), A106890-A106891 (d=-43), A033209, A106282, A106892-A106893 (d=-44), A033232, A106894-A106900 (d=-47), A068229 (d=-48), A106901-A106904 (d=-51), A033210, A106905-A106906 (d=-52), A033235, A106907-A106913 (d=-55), A033211, A106914-A106917 (d=-56), A106918-A106922 (d=-59), A033212, A106859 (d=-60), A106923-A106930 (d=-63), A007521, A106931 (d=-64), A106932-A106933 (d=-67), A033213, A106934-A106938 (d=-68), A033246, A106939-A106948 (d=-71), A106949-A106950 (d=-72), A033212, A106951-A106952 (d=-75), A033214, A106953-A106955 (d=-76), A033251, A106956-A106962 (d=-79), A047650, A106963-A106965 (d=-80), A106966-A106970 (d=-83), A033215, A102271, A102273, A106971-A106974 (d=-84), A033256, A106975-A106983 (d=-87), A033216, A106984 (d=-88), A106985-A106989 (d=-91), A033217 (d=-92), A033206, A106990-A107001 (d=-95), A107002-A107008 (d=-96), A107009-A107013 (d=-99).

%Y Other collections of quadratic forms: A139643, A139827.

%Y For a more comprehensive list of sequences giving numbers and/or primes represented by binary quadratic forms, see the "Binary Quadratic Forms and OEIS" link.

%Y Cf. also A242660.

%K nonn,easy

%O 1,1

%A _T. D. Noe_, May 09 2005, Apr 28 2008

%E Removed old Mathematica programs - _T. D. Noe_, Sep 09 2009

%E Edited (pointed out error in QuadPrimes, added new version of program, checked and extended b-file). - _N. J. A. Sloane_, Jun 06 2014

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 29 08:13 EDT 2024. Contains 371265 sequences. (Running on oeis4.)