This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A106824 Trajectory of 1 under the morphism 1->13, 2->13223, 3->1323. 1
 1, 3, 1, 3, 2, 3, 1, 3, 1, 3, 2, 3, 1, 3, 2, 2, 3, 1, 3, 2, 3, 1, 3, 1, 3, 2, 3, 1, 3, 1, 3, 2, 3, 1, 3, 2, 2, 3, 1, 3, 2, 3, 1, 3, 1, 3, 2, 3, 1, 3, 2, 2, 3, 1, 3, 2, 2, 3, 1, 3, 2, 3, 1, 3, 1, 3, 2, 3, 1, 3, 2, 2, 3, 1, 3, 2, 3, 1, 3, 1, 3, 2, 3, 1, 3, 1, 3, 2, 3, 1, 3, 2, 2, 3, 1, 3, 2, 3, 1, 3, 1, 3, 2, 3, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Only from the 13th term on, this differs from the limit sequence of { 1 -> 131, 2 -> 212, 3 -> 323 } = absolute values of A229215. - M. F. Hasler, Aug 06 2015 LINKS J. M. Dumont and A. Thomas, Digital sum problems and substitutions on a finite alphabet, J. Number Theory, 39 (1991), 351-366. MAPLE S:={1=[1, 3], 2=[1, 3, 2, 2, 3], 3=[1, 3, 2, 3]}:subs(S, 1):subs(S, %):subs(S, %):subs(S, %):subs(S, %); # all brackets have to be removed. - Emeric Deutsch, simplified by M. F. Hasler, Aug 06 2015 S:={1=(1, 3), 2=(1, 3, 2, 2, 3), 3=(1, 3, 2, 3)}: (curry(subs, S)@@6)([1]); # Robert Israel, Aug 06 2015 MATHEMATICA Nest[ Flatten[ # /. {1 -> {1, 3}, 2 -> {1, 3, 2, 2, 3}, 3 -> {1, 3, 2, 3}}] &, {1}, 5] (* Robert G. Wilson v, Jun 20 2005 *) PROG (PARI) A106824(n, a=[1], S=[[1, 3], [1, 3, 2, 2, 3], [1, 3, 2, 3]])={while(#aS[i], a))); a} \\ M. F. Hasler, Aug 06 2015 CROSSREFS Cf. A229215. Sequence in context: A126682 A016571 A055189 * A317203 A229215 A123508 Adjacent sequences:  A106821 A106822 A106823 * A106825 A106826 A106827 KEYWORD nonn,easy AUTHOR N. J. A. Sloane, May 20 2005 EXTENSIONS More terms from Emeric Deutsch, May 30 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 15 22:48 EDT 2019. Contains 325061 sequences. (Running on oeis4.)