login
Triangle read by rows: g.f. for row r is Product_{i=1..r-2} (x^i-x^(r+1))/(1-x^i).
3

%I #11 Sep 14 2021 17:34:32

%S 1,1,0,1,1,1,0,0,0,1,1,2,1,1,0,0,0,0,0,0,1,1,2,2,2,1,1,0,0,0,0,0,0,0,

%T 0,0,0,1,1,2,2,3,2,2,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,3,3,3,

%U 2,2,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,3,3,4,3,3,2,2,1

%N Triangle read by rows: g.f. for row r is Product_{i=1..r-2} (x^i-x^(r+1))/(1-x^i).

%D See A008967 for references.

%H G. C. Greubel, <a href="/A106822/b106822.txt">Rows n = 0..25 of the irregular triangle, flattened</a>

%e Initial rows are:

%e [1]

%e [1]

%e [0, 1, 1, 1]

%e [0, 0, 0, 1, 1, 2, 1, 1]

%e [0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 2, 1, 1]

%e [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 3, 2, 2, 1, 1]

%p f2:=r->mul( (x^i-x^(r+1))/(1-x^i), i = 1..r-2); for r from 1 to 10 do series(f2(r),x,50); od:

%t f[n_, x_]:= Product[(x^j - x^(n+2))/(1 - x^j), {j, n-1}];

%t T[n_]:= CoefficientList[f[n, x], x];

%t Table[T[n], {n, 0, 10}]//Flatten (* _G. C. Greubel_, Sep 12 2021 *)

%o (PARI) row(r) = Vecrev(prod(i=1, r-2, (x^i-x^(r+1))/(1-x^i))); \\ _Michel Marcus_, Sep 14 2021

%Y If the initial zeros in each row are omitted, we get A008967.

%Y Cf. A008967, A106823.

%K nonn,tabf

%O 0,12

%A _N. J. A. Sloane_, May 20 2005