This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A106795 3-symbol substitution that has a real root cubic characteristic polynomial: x^3+9*x^2-3*x-1. 0
 1, 1, 1, 1, 1, 1, 2, 2, 2, 3, 1, 1, 1, 1, 1, 1, 2, 2, 2, 3, 1, 1, 1, 1, 1, 1, 2, 2, 2, 3, 1, 1, 1, 1, 1, 1, 2, 2, 2, 3, 1, 1, 1, 1, 1, 1, 2, 2, 2, 3, 1, 1, 1, 1, 1, 1, 2, 2, 2, 3, 2, 2, 3, 1, 1, 1, 1, 2, 2, 3, 1, 1, 1, 1, 2, 2, 3, 1, 1, 1, 1, 3, 1, 1, 1, 2, 2 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,7 COMMENTS The study of real root cubic Pisots by E. Bombieri and C. Frougny is related to the Penrose aperiodic tiling types. Roots hare are:{{x -> -0.20473}, {x -> 0.565376}, {x -> 8.63935}} REFERENCES Pure Discrete Spectrum for One Dimensional Substitution Systems of Pisot Type, V. F. Sirvent and B. Solomyak, page 14 LINKS FORMULA 1->{1, 1, 1, 1, 1, 1, 2, 2, 3, 3}, 2->{2, 2, 3, 1, 1, 1, 1}, 3->{3, 1, 1, 1, 2, 2} MATHEMATICA s[1] = {1, 1, 1, 1, 1, 1, 2, 2, 2, 3}; s[2] = {2, 2, 3, 1, 1, 1, 1}; s[3] = {3, 1, 1, 1, 2, 2}; t[a_] := Flatten[s /@ a]; p[0] = {1}; p[1] = t[p[0]]; p[n_] := t[p[n - 1]] aa = p[2] CROSSREFS Cf. A106749. Sequence in context: A307299 A307298 A216674 * A162203 A071455 A288724 Adjacent sequences:  A106792 A106793 A106794 * A106796 A106797 A106798 KEYWORD nonn,uned AUTHOR Roger L. Bagula, May 17 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 20 01:14 EDT 2019. Contains 326136 sequences. (Running on oeis4.)