

A106730


Productbased sequence of a Markov type based on a functional addition group.


0



2, 3, 0, 1, 3, 0, 1, 2, 4, 0, 1, 0, 1, 3, 4, 2, 3, 0, 1, 4, 4, 2, 3, 0, 1, 3, 0, 1, 2, 4, 4, 4, 0, 1, 4, 2, 2, 0, 1, 2, 2, 4, 4, 0, 1, 0, 1, 4, 4, 0, 1, 0, 1, 3, 4, 2, 3, 0, 1, 0, 1, 4, 2, 3, 3, 3, 2, 2, 0, 1, 4, 4, 3, 2, 4, 0, 1, 3, 4, 0, 1, 3, 0, 1, 0, 1, 4, 2, 0, 1, 2, 0, 1, 3, 4, 3, 4, 2, 4, 3, 2, 3, 3, 3, 0
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,1


COMMENTS

The object of this sequence is to show a product Markov can be formed from an Addition group based on the primes. Modulo five can be taken as a signed modulo three: {0,1,2,3,4}>{2,1,0,1,2}


LINKS

Table of n, a(n) for n=0..104.


FORMULA

f(n)=10Mod[Prime[n+3], 10] g[n]=Mod[Mod[n, 5], 4] h(n)]=g(f(n)) a(n)=Mod[Mod[(1+h[n))*a(n1), 5]+1, 5]


MATHEMATICA

f[n_] = 10  Mod[Prime[n + 3], 10] g[n_] = Mod[Mod[n, 5], 4] h[n_] = g[f[n]] digits = 20 aa[1] = 2; aa[n_] := aa[n] = Mod[Mod[aa[n  1]*(1 + h[n]), 5] + 1, 5] c = Table[aa[n], {n, 1, digits^2/2}]


CROSSREFS

Sequence in context: A170899 A221321 A179392 * A089652 A195467 A112168
Adjacent sequences: A106727 A106728 A106729 * A106731 A106732 A106733


KEYWORD

nonn,uned


AUTHOR

Roger L. Bagula, May 14 2005


STATUS

approved



