login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A106728 Triangular array based on modulo ten addition of the primes under a modulo five, modulo four function. 0
2, 3, 0, 1, 2, 0, 2, 3, 1, 2, 0, 1, 3, 0, 2, 1, 2, 0, 1, 3, 0, 0, 1, 3, 0, 2, 3, 2, 3, 0, 2, 3, 1, 2, 1, 0, 2, 3, 1, 2, 0, 1, 0, 3, 2, 3, 0, 2, 3, 1, 2, 1, 0, 3, 0, 1, 2, 0, 1, 3, 0, 3, 2, 1, 2, 0, 2, 3, 1, 2, 0, 1, 0, 3, 2, 3, 1, 2, 1, 2, 0, 1, 3, 0, 3, 2, 1, 2, 0, 1, 0, 0, 1, 3, 0, 2, 3, 2, 1, 0, 1, 3, 0, 3, 2 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

The object of these modulo functions is to form a group under Addition.

Triangular form: {2} {3, 0} {1, 2, 0} {2, 3, 1, 2} {0, 1, 3, 0, 2} {1, 2, 0, 1, 3, 0} {0, 1, 3, 0, 2, 3, 2}.

These can be translated back to modulo 10 by using the substitution: 0->9 1->1 2->7 3->3.

LINKS

Table of n, a(n) for n=0..104.

FORMULA

f(n)=10-Mod[Prime[n+3], 10] g[n]=Mod[Mod[n, 5], 4] h(n)=g(f(n)) a[n, m]=Mod[h(n)+h(m), 4]

MATHEMATICA

f[n_] = 10 - Mod[Prime[n + 3], 10] g[n_] = Mod[Mod[n, 5], 4] h[n_] = g[f[n]] digits = 20 a = Table[Table[Mod[h[n]+h[m], 4], {n, 1, m}], {m, 1, digits}]; MatrixForm[a] Flatten[a]

CROSSREFS

Sequence in context: A243081 A287847 A271369 * A276335 A189480 A010873

Adjacent sequences:  A106725 A106726 A106727 * A106729 A106730 A106731

KEYWORD

nonn,tabl,uned

AUTHOR

Roger L. Bagula, May 14 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified September 25 16:31 EDT 2017. Contains 292499 sequences.