login
A106710
Number of words with n letters from an alphabet of size 26 with at least two equal consecutive letters.
2
0, 26, 1326, 50726, 1725126, 55009526, 1684153926, 50135658326, 1462218522726, 41984966747126, 1190791264331526, 33440126095275926, 931432109043580326, 25766955599293244726, 708683864685628269126, 19394355959426432653526, 528467641885089690397926
OFFSET
1,2
FORMULA
a(n) = 26^n - 26*25^(n - 1).
From Colin Barker, Nov 05 2015: (Start)
a(n) = 51*a(n-1) - 650*a(n-2) for n>2.
G.f.: 26*x^2 / ((1-25*x)*(1-26*x)). (End)
From G. C. Greubel, Sep 10 2021: (Start)
a(n) = 26*(A009970(n-1) - A009969(n-1)).
E.g.f.: exp(26*x) - (26/25)*exp(25*x). (End)
EXAMPLE
a(3) = 1326 because 26^3 - 26*(25^2) = 1326.
MATHEMATICA
Table[26*(26^(n-1) -25^(n-1)), {n, 25}] (* G. C. Greubel, Sep 10 2021 *)
PROG
(PARI) a(n) = 26^n - 26*(25^(n - 1)); \\ Michel Marcus, Aug 14 2013
(PARI) concat(0, Vec(26*x^2/((25*x-1)*(26*x-1)) + O(x^100))) \\ Colin Barker, Nov 05 2015
(Sage) [26*(26^(n-1) - 25^(n-1)) for n in (1..25)] # G. C. Greubel, Sep 10 2021
CROSSREFS
Sequence in context: A187463 A160311 A220955 * A114052 A042303 A042300
KEYWORD
nonn,easy
AUTHOR
Luca Colucci, May 14 2005
EXTENSIONS
More terms from Michel Marcus, Aug 14 2013
STATUS
approved