This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A106704 6-symbol substitution from S[n] Coxeter diagram with n=4. 0
 5, 6, 5, 5, 5, 5, 4, 5, 5, 6, 5, 6, 5, 6, 5, 6, 5, 6, 5, 5, 5, 5, 4, 5, 5, 6, 5, 5, 5, 5, 4, 5, 5, 6, 5, 5, 5, 5, 4, 5, 5, 6, 5, 5, 5, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 5, 6, 5, 5, 5, 5, 4, 5, 5, 6, 5, 5, 5, 5, 4, 5, 5, 6, 5, 6, 5, 6, 5, 6, 5, 6, 5, 5, 5, 5, 4, 5, 5, 6, 5, 6, 5, 6, 5, 6, 5, 6, 5, 5, 5, 5, 4, 5, 5 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS Characteristic Polynomial n=4: x6-14*x4+56*x2-64 These Coxeter diagrams behave very much like odd even blocks or branches. REFERENCES S[n] substitutions of the Coxeter diagram from the McMullen article. Curtis McMullen, Prym varieties and Teichmueller curves, May 04, 2005 LINKS FORMULA 1->{5, 6}, 2->{5}*n, 3->{4, 5}, 4->{3}*n, 5->{1, 2, 3}, 6->{1}*n MATHEMATICA n0=6; n=4; s[1] = {5, 6}; s[2] = Table[If[i <= n, 5, {}], {i, 1, n0}]; s[3] = {4, 5}; s[4] = Table[If[i <= n, 3, {}], {i, 1, n0}]; s[5] = {1, 2, 3}; s[6] = Table[If[i <= n, 1, {}], {i, 1, n0}]; t[a_] := Flatten[s /@ a]; p[0] = {1}; p[1] = t[p[0]]; p[n_] := t[p[n - 1]] aa = p[5] CROSSREFS Sequence in context: A071629 A087496 A198742 * A127205 A006944 A010717 Adjacent sequences:  A106701 A106702 A106703 * A106705 A106706 A106707 KEYWORD nonn,uned AUTHOR Roger L. Bagula, May 09 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.