

A106704


6symbol substitution from S[n] Coxeter diagram with n=4.


0



5, 6, 5, 5, 5, 5, 4, 5, 5, 6, 5, 6, 5, 6, 5, 6, 5, 6, 5, 5, 5, 5, 4, 5, 5, 6, 5, 5, 5, 5, 4, 5, 5, 6, 5, 5, 5, 5, 4, 5, 5, 6, 5, 5, 5, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 5, 6, 5, 5, 5, 5, 4, 5, 5, 6, 5, 5, 5, 5, 4, 5, 5, 6, 5, 6, 5, 6, 5, 6, 5, 6, 5, 5, 5, 5, 4, 5, 5, 6, 5, 6, 5, 6, 5, 6, 5, 6, 5, 5, 5, 5, 4, 5, 5
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,1


COMMENTS

Characteristic Polynomial n=4: x614*x4+56*x264 These Coxeter diagrams behave very much like odd even blocks or branches.


REFERENCES

S[n] substitutions of the Coxeter diagram from the McMullen article.
Curtis McMullen, Prym varieties and Teichmueller curves, May 04, 2005


LINKS

Table of n, a(n) for n=0..104.


FORMULA

1>{5, 6}, 2>{5}*n, 3>{4, 5}, 4>{3}*n, 5>{1, 2, 3}, 6>{1}*n


MATHEMATICA

n0=6; n=4; s[1] = {5, 6}; s[2] = Table[If[i <= n, 5, {}], {i, 1, n0}]; s[3] = {4, 5}; s[4] = Table[If[i <= n, 3, {}], {i, 1, n0}]; s[5] = {1, 2, 3}; s[6] = Table[If[i <= n, 1, {}], {i, 1, n0}]; t[a_] := Flatten[s /@ a]; p[0] = {1}; p[1] = t[p[0]]; p[n_] := t[p[n  1]] aa = p[5]


CROSSREFS

Sequence in context: A071629 A087496 A198742 * A127205 A006944 A010717
Adjacent sequences: A106701 A106702 A106703 * A106705 A106706 A106707


KEYWORD

nonn,uned


AUTHOR

Roger L. Bagula, May 09 2005


STATUS

approved



