login
A106704
6-symbol substitution from S[n] Coxeter diagram with n=4.
0
5, 6, 5, 5, 5, 5, 4, 5, 5, 6, 5, 6, 5, 6, 5, 6, 5, 6, 5, 5, 5, 5, 4, 5, 5, 6, 5, 5, 5, 5, 4, 5, 5, 6, 5, 5, 5, 5, 4, 5, 5, 6, 5, 5, 5, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 5, 6, 5, 5, 5, 5, 4, 5, 5, 6, 5, 5, 5, 5, 4, 5, 5, 6, 5, 6, 5, 6, 5, 6, 5, 6, 5, 5, 5, 5, 4, 5, 5, 6, 5, 6, 5, 6, 5, 6, 5, 6, 5, 5, 5, 5, 4, 5, 5
OFFSET
0,1
COMMENTS
Characteristic Polynomial n=4: x6-14*x4+56*x2-64 These Coxeter diagrams behave very much like odd even blocks or branches.
REFERENCES
S[n] substitutions of the Coxeter diagram from the McMullen article.
Curtis McMullen, Prym varieties and Teichmueller curves, May 04, 2005
FORMULA
1->{5, 6}, 2->{5}*n, 3->{4, 5}, 4->{3}*n, 5->{1, 2, 3}, 6->{1}*n
MATHEMATICA
n0=6; n=4; s[1] = {5, 6}; s[2] = Table[If[i <= n, 5, {}], {i, 1, n0}]; s[3] = {4, 5}; s[4] = Table[If[i <= n, 3, {}], {i, 1, n0}]; s[5] = {1, 2, 3}; s[6] = Table[If[i <= n, 1, {}], {i, 1, n0}]; t[a_] := Flatten[s /@ a]; p[0] = {1}; p[1] = t[p[0]]; p[n_] := t[p[n - 1]] aa = p[5]
CROSSREFS
Sequence in context: A071629 A087496 A198742 * A127205 A006944 A010717
KEYWORD
nonn,uned
AUTHOR
Roger L. Bagula, May 09 2005
STATUS
approved