login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A106597 Triangle T(n,k) (n>=0, 0<=k<=n) read by rows: T(n,0)=T(n,n)=1, T(n,k) = T(n-1,k-1) + T(n-1,k) + Sum_{i >= 1} T(n-2i,k-i). 2
1, 1, 1, 1, 3, 1, 1, 5, 5, 1, 1, 7, 14, 7, 1, 1, 9, 27, 27, 9, 1, 1, 11, 44, 72, 44, 11, 1, 1, 13, 65, 149, 149, 65, 13, 1, 1, 15, 90, 266, 388, 266, 90, 15, 1, 1, 17, 119, 431, 836, 836, 431, 119, 17, 1, 1, 19, 152, 652, 1585, 2150, 1585, 652, 152, 19, 1, 1, 21, 189, 937, 2743, 4753, 4753, 2743, 937, 189, 21, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,5

COMMENTS

Next term is sum of two terms above you in previous row (as in Pascal's triangle A007318) plus sum of terms directly above you on a vertical line.

T(n,n-k) is the number of lattice paths from (0,0) to (n,k) using steps (1,0), (0,1), and (s,s) for s>=1. - Joerg Arndt, Jul 01 2011

Row sums gives A118649. - Emanuele Munarini, Feb 01 2017

LINKS

Table of n, a(n) for n=0..77.

FORMULA

G.f.: (1-x^2*y)/(1-x-x*y-2*x^2*y+x^3*y+x^3*y^2).- Emanuele Munarini, Feb 01 2017

EXAMPLE

Triangle begins:

1;

1, 1;

1, 3, 1;

1, 5, 5, 1;

1, 7, 14, 7, 1;

1, 9, 27, 27, 9, 1;

1, 11, 44, 72, 44, 11, 1;

1, 13, 65, 149, 149, 65, 13, 1;

1, 15, 90, 266, 388, 266, 90, 15, 1;

1, 17, 119, 431, 836, 836, 431, 119, 17, 1;

MATHEMATICA

CoefficientList[#, y]& /@ CoefficientList[(1 - x^2 y)/(1 - x - x y - 2x^2 y + x^3 y + x^3 y^2) + O[x]^12, x] // Flatten (* Jean-Fran├žois Alcover, Oct 30 2018, after Emanuele Munarini *)

PROG

(PARI) /* same as in A092566, but last line (output) replaced by the following */

/* show as triangle T(n-k, k): */

{ for(n=0, N-1, for(k=0, n, print1(T(n-k, k), ", "); ); print(); ); }

/* Joerg Arndt, Jul 01 2011 */

CROSSREFS

Cf. A118649.

Sequence in context: A238339 A302997 A144461 * A108359 A100936 A086620

Adjacent sequences:  A106594 A106595 A106596 * A106598 A106599 A106600

KEYWORD

nonn,tabl,easy

AUTHOR

N. J. A. Sloane, May 30 2005

EXTENSIONS

More terms from Joshua Zucker, May 10 2006

Definition corrected by Emilie Hogan, Oct 15 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 20 00:28 EST 2019. Contains 320329 sequences. (Running on oeis4.)