login
A106591
Six-symbol substitution based on doubling the Rauzy substitution : n=3 characteristic polynomial: x^6-19*x^4+99*x^2-81.
0
1, 4, 5, 6, 2, 2, 2, 3, 3, 3, 1, 2, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 5, 6, 4, 4, 4, 5, 5, 5, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 3, 3, 3, 1, 2, 3, 2, 2
OFFSET
0,2
COMMENTS
Triangular form: {1}, {4, 5, 6}, {2, 2, 2, 3, 3, 3, 1, 2, 3} {4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 5, 6, 4, 4, 4, 5, 5,5}
REFERENCES
Curtis McMullen, Prym varieties and Teichmuller curves.
FORMULA
1->{4.5.6}, 2->{4}*n, 3->{5}, 4->{2}, 5->{3}.n 6->{1, 2, 3}
MATHEMATICA
n0=6 n=3 s[1] = {4, 5, 6}; s[2] = Table[If[i <= n, 4, {}], {i, 1, n0}]; s[3] = Table[If[i <= n, 5, {}], {i, 1, n0}]; s[4] = Table[If[i <= n, 2, {}], {i, 1, n0}]; s[5] = Table[If[i <= n, 3, {}], {i, 1, n0}]; s[6] = {1, 2, 3}; t[a_] := Flatten[s /@ a]; p[0] = {1}; p[1] = t[p[0]]; p[n_] := t[p[n - 1]] aa = Table[p[i], {i, 0, 4}]; MatrixForm[aa] aaa = Flatten[aa]
CROSSREFS
Sequence in context: A348355 A076087 A082486 * A106592 A106593 A276036
KEYWORD
nonn,uned
AUTHOR
Roger L. Bagula, May 10 2005
STATUS
approved