login
A106561
Primes p for which the polynomial Q(x)=17*x^3+8*x^2+5*x+23 is reducible modulo p.
0
3, 7, 11, 13, 23, 29, 41, 47, 53, 59, 61, 67, 79, 89, 101, 107, 109, 113, 157, 163, 181, 191, 193, 197, 199, 223, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 283, 293, 307, 311, 313, 317, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421
OFFSET
1,1
EXAMPLE
Q(2)=0 (mod 3), Q(5)=0 (mod 7), Q(7)=0 (mod 11).
MAPLE
sucesion_primos:=proc(Q, n) local p, x0, lista; lista:=[]; p:=2; while p<n do for x0 from 0 to p do if (eval(Q, x=x0) mod p=0) then lista:=[op(lista), p]; break else end if; end do; p:=nextprime(p); end do; return(lista); end proc;
PROG
(PARI) X=Pol([17, 8, 5, 23]); forprime(p=2, 1000, if(matsize(factormod(X, p))[1]>1, print1(" ", p))) (Alekseyev)
CROSSREFS
Sequence in context: A095286 A177681 A225222 * A296929 A111363 A193258
KEYWORD
nonn
AUTHOR
Rafael Gallardo Jimenez (thesecretwars(AT)yahoo.com), May 09 2005
EXTENSIONS
More terms from Max Alekseyev, May 17 2005
STATUS
approved