login
Trajectory of 1 under the morphism 1->{2, 3, 2}, 2->{3, 1, 3}, 3->{4, 4, 4}, 4->{1, 2, 1}.
0

%I #14 Oct 02 2016 10:17:59

%S 2,3,2,3,1,3,2,3,2,2,3,2,3,1,3,2,3,2,2,3,2,3,1,3,2,3,2,4,4,4,2,3,2,4,

%T 4,4,1,2,1,1,2,1,1,2,1,4,4,4,2,3,2,4,4,4,2,3,2,3,1,3,2,3,2,2,3,2,3,1,

%U 3,2,3,2,2,3,2,3,1,3,2,3,2,3,1,3,4,4,4,3,1,3,4,4,4,2,3,2,4,4,4,3,1,3,4,4,4

%N Trajectory of 1 under the morphism 1->{2, 3, 2}, 2->{3, 1, 3}, 3->{4, 4, 4}, 4->{1, 2, 1}.

%C Characteristic polynomial is x^4 - x^3 - 4x^2 - x - 15.

%H F. M. Dekking, <a href="http://dx.doi.org/10.1016/0001-8708(82)90066-4">Recurrent Sets</a>, Advances in Mathematics, vol. 44, no. 1, April 1982, page 85, section 4.1

%H <a href="/index/Fi#FIXEDPOINTS">Index entries for sequences that are fixed points of mappings</a>

%t s[1] = {2, 3, 2}; s[2] = {3, 1, 3}; s[3] = {4, 4, 4}; s[4] = {1, 2, 1}; t[a_] := Flatten[s /@ a]; p[0] = {1}; p[1] = t[p[0]]; p[n_] := t[p[n - 1]]; aa = p[5]

%K nonn

%O 0,1

%A _Roger L. Bagula_, May 09 2005

%E Edited by _N. J. A. Sloane_, Jun 03 2006