%I
%S 1,1,1,2,2,1,4,4,3,1,7,8,7,4,1,13,15,15,11,5,1,24,28,30,26,16,6,1,44,
%T 52,58,56,42,22,7,1,81,96,110,114,98,64,29,8,1,149,177,206,224,212,
%U 162,93,37,9,1,274,326,383,430,436,374,255,130,46,10,1,504,600,709,813,866,810
%N A Pascal type matrix based on the tribonacci numbers.
%C Row sums are A001590(n+3), diagonal sums are A106523. Row sums of A106522 mod 2 are A106524.
%F Riordan array (1/(1xx^2x^3), x/(1x)); Number triangle T(n, 0)=A000073(n+2), T(n, k)=T(n1, k1)+T(n1, k).
%e Triangle begins
%e 1;
%e 1,1;
%e 2,2,1;
%e 4,4,3,1;
%e 7,8,7,4,1;
%e 13,13,15,11,5,1;
%K easy,nonn,tabl
%O 0,4
%A _Paul Barry_, May 06 2005
