login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A106520 a(n) = A068875(n-1) - A003239(n). 0
2, 4, 18, 48, 156, 472, 1526, 4852, 16000, 52940, 178276, 605520, 2079862, 7201084, 25138878, 88358520, 312576996, 1112087012, 3977502766, 14294093652, 51596165872, 186997738504, 680272334202, 2483340387644, 9094756956908 (list; graph; refs; listen; history; text; internal format)
OFFSET

5,1

COMMENTS

This is the multiplicity of the trivial module in a sequence of modules of dimension (2n-2)!/n! over the symmetric groups S_n, induced from modules of dimension (2n-2)!/n!/(n-1)! (Catalan) over the cyclic groups C_n.

LINKS

Table of n, a(n) for n=5..29.

F. Chapoton, On some anticyclic operads, Algebraic and Geometric Topology 5 (2005), paper no. 4, pages 53-69.

FORMULA

a(n) = 1/n * binomial(2*n-2, n-1) * 2 - 1/(2*n) * sum(d divides n, phi(d) * binomial(2*n/d, n/d) ).

EXAMPLE

a(6)=4.

MAPLE

a:=proc(n) if n<=1 then 0 else 1/n*binomial(2*n-2, n-1)*2-1/(2*n)*add(phi(d)*binomial(2*n/d, n/d), d=divisors(n)) end: end:

MATHEMATICA

a[n_] :=  If[n <= 1, 0, 1/n*Binomial[2*n-2, n-1]*2 - 1/(2*n)*DivisorSum[n, EulerPhi[#]*Binomial[2*n/#, n/#]&]]; Table[a[n], {n, 5, 30}] (* Jean-Fran├žois Alcover, Feb 20 2017 *)

CROSSREFS

Cf. A000108, A001761.

Sequence in context: A240316 A151449 A045664 * A301802 A318249 A093045

Adjacent sequences:  A106517 A106518 A106519 * A106521 A106522 A106523

KEYWORD

nonn

AUTHOR

F. Chapoton, May 30 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 22 09:52 EST 2019. Contains 319363 sequences. (Running on oeis4.)