login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A106519 a(n) = (2/n)*binomial(2n-2,n-1) - (1/2n)*Sum_{d=divisors(n)} mobius(d)*binomial(2*n/d,n/d). 0
1, 1, 2, 3, 9, 19, 58, 160, 499, 1527, 4940, 16001, 53187, 178305, 606330, 2079863, 7203864, 25138879, 88367780, 312577245, 1112119079, 3977502767, 14294207172, 51596165898, 186998138529, 680272336906, 2483341820512, 9094756956909 (list; graph; refs; listen; history; text; internal format)
OFFSET

2,3

COMMENTS

A simple formula with no known combinatorial interpretation. This should give the multiplicity of the trivial module in some sequence of modules of dimension (2n-2)!/n! over the symmetric groups S_n induced from modules of dimension (2n-2)!/n!(n-1)! over the cyclic groups C_n.

LINKS

Table of n, a(n) for n=2..29.

EXAMPLE

a(6)=9

MAPLE

a:=proc(n) if n<=1 then 0 else 1/n*binomial(2*n-2, n-1)*2-1/(2*n)*add(mobius(d)*binomial(2*n/d, n/d), d=divisors(n)) end: end:

MATHEMATICA

f[n_] := Block[{d = Divisors[n]}, 2Binomial[2n - 2, n - 1]/n - Plus @@ (MoebiusMu[d]*Binomial[2*n/d, n/d])/(2n)]; Table[ f[n], {n, 29}] (* Robert G. Wilson v, May 31 2005 *)

CROSSREFS

Cf. A001761, A000108.

Sequence in context: A307898 A079992 A324374 * A006866 A121908 A231368

Adjacent sequences:  A106516 A106517 A106518 * A106520 A106521 A106522

KEYWORD

nonn

AUTHOR

F. Chapoton, May 30 2005

EXTENSIONS

More terms from Robert G. Wilson v, May 31 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 23 19:54 EDT 2019. Contains 328373 sequences. (Running on oeis4.)